Boolean Algebra and Logic Gates Chapter 2

EECE 256

Dr. Sidney Fels Steven Oldridge

Topics

- Definitions of Boolean Algebra
- · Axioms and Theorems of Boolean Algebra
 - two valued Boolean Algebra
- Boolean Functions
 - simplification
- Canonical forms
 - minterm and maxterms
- Other logic gates

9/18/10

(c) S. Fels, since 2010

Boolean Algebra

- Allows us to define and simplify functions of binary variables
- Important for designers to create complex circuits
 - functions of computer
 - ASIC devices
 - programmable logic
 - determine machine state transitions

9/18/10

(c) S. Fels, since 201

			_
			_
			_
			_

Boolean Algebra

- Adheres to the laws of an algebra
 - closure
 - associative
 - commutative
 - identity
 - inverse
 - distributive
 - + for addition (0 is identity)
 - for multiplication (1 is identity)

(c) S. Fels, since 2010

Axioms of Boolean Algebra

- closure for + and •
- Identity:

• commutative

x + y =

$$x \bullet y = y \bullet x$$

• distributive

$$x(y+z) =$$

$$x + (y z) =$$

9/18/10

(c) S. Fels, since 2010

Axioms of Boolean Algebra

Complement

$$-x + x' = 1$$
 $x \cdot x' = 0$

 two elements for Two-Valued Boolean Algebra 0 and 1; 0!= 1

AND = \bullet , OR = + , NOT = inverse

- check with Truth tables and you'll see it meets all the axioms
- switching algebra (Shannon, 1928)
 - basis of all digital computers
- Precedence:
 - parentheses, NOT, AND, OR

c) S. Fels, since 2010

Theorems and Properties of Boolean Algebra **Table 2.1**Postulates and Theorems of Boolean Algebra Postulate 2 identity Postulate 5 complement (a) Postulate 5 complement (a) Theorem 1 idempotent (a) Theorem 3 on and 1 ops Theorem 3, involution Postulate 3, commutative (a) Theorem 4, associative (a) Postulate 4, distributive (a) Theorem 5, DeMorgan (a) Theorem 6, absorption (a) (c) S. Fels, since 2010

Theorems and Properties of Boolean Algebra

nd Theorems of Boolean Alaebra

Postulate 2 identity Postulate 5 complement	(a) $x + 0 = x$ (a) $x + x' = 1$
Theorem 1 idempotent	(a) $x + x = x$
Theorem 2 0 and 1 ops	(a) $x + 1 = 1$
Theorem 3, involution	(x')' = x
Postulate 3, commutative	(a) x + y = y + x
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$
Postulate 4, distributive	(a) $x(y+z) = xy + xz$
Theorem 5, DeMorgan	(a) $(x + y)' = x'y'$
Theorem 6, absorption	(a) $r + rv = r$

Duality: interchange 0 for 1 and AND and OR $\,$

(c) S. Fels, since 2010

Theorems and Properties of Boolean Algebra

able 2.1				
Postulates and Theorems of	Boolea	n Algebra		
Postulate 2 identity	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5 complement	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1 idempotent	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2 0 and 1 ops	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a) :	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b) a	x(x + y) = x

Duality: interchange 0 for 1 and AND and OR

Theorems used to simplify complex functions of binary variables

Useful Theorems

- Simplification Theorems:
 - X Y + X Y' =
 - X + X Y = - (X + Y') • Y =
- DeMorgan's Law:
 - -(X+Y)'=
- Theorems for Multiplying and Factoring:
 - $-(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$
- Proofs by algebra complicated
 - use truth tables instead

- /-- /--

(c) S. Fels, since 2010

Some algebraic proofs

Proving Theorems via axioms of Boolean Algebra:

e.g., Prove: $X \cdot Y + X \cdot Y' = X$

e.g., Prove: $X + X \cdot Y = X$

e.g., Prove: $(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$

9/18/10

(c) S. Fels, since 2010

Some algebraic proofs

Proving Theorems via axioms of Boolean Algebra:

e.g., Prove: X •Y + X • Y' = X

LHS = X (Y + Y') distributive = X(1) complement

= X = RHS identity

e.g., Prove: $X + X \cdot Y = X$

LHS = X (1+Y) distributive

= X(1) identity

= X = RHS

9/18/10

ls, since 2010

12

4

Some algebraic proofs

e.g., Prove: $(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$

- LHS = (X+Y)X' + (X+Y)Z distributive = XX' + YX' + XZ + YZ distributive
 - = 0 + X'Y + XZ + YZ complement, associative, distributive
 - = X'Y(Z + Z') + XZ(Y + Y') + YZ(X + X') identity/complement
 - = X'YZ + X'YZ' + XYZ + XY'Z + XYZ + X'YZ distributive, associative
 - = XZ(Y+Y') + X'Y(Z+Z') idempotent, associative, distributive
 - = XZ + X'Y = RHS complement

(c) S. Fels, since 2010

Some proofs using truth tables

DeMorgan's Law	Х	Υ	X'	Y'	(X+Y)	(X+Y)'	X'*Y'
(X +Y)' = X' • Y'	0	0	1	1			
	0	1	1	0			
	1	0	0	1			
	1	1	0	0			
$(X \cdot Y)' = X' + Y'$							
	Х	Υ	X'	Y'	(X ∗Y)	(X*Y)'	X'+Y'
	0	0	1	1			
	0	1	1	0			
	1	0	0	1			
	1	1	0	0			

Some pro	OT:	sι	JS	ıng	truti	n ta	bies
DeMorgan's Law	Х	Υ	X'	Y'	(X+Y)	(X+Y)'	X'*Y'
(X +Y)' = X' • Y'	0	0	1	1	0	1	1
	0	1	1	0	1	0	0
	1	0	0	1	1	0	0
	1	1	0	0	1	0	0
$(X \cdot Y)' = X' + Y'$	х	Υ	X'	Y'	(X *Y)	(X*Y)'	X'+Y'
	0	0	1	1	0	1	1
	0	1	1	0	0	1	1
	1	0	0	1	0	1	1
	1	1	0	0	1	0	0
/18/10				ince 2010			

DeMorgan's Thereom

Example:

Z = A'B'C + A'BC + AB'C + ABC' $Z' = (A+B+C') \cdot (A+B'+C') \cdot (A'.....$

9/18/10

(c) S. Fels, since 2010

Boolean Functions

- Now, we have everything to make Boolean Functions
 - F = f(x,y,z...) where x, y, z etc. are binary values(0,1) with Boolean operators
 - circuits can implement the function
 - algebra used to simplify the function to make it easier to implement

9/18/10

(c) S. Fels, since 2010

17

Example • $F_1 = x + y'z$ x + y = x + y'z x + y'z = x + y'z x +

• F	: ₁ = x	= x	+ y	'z	Exar
х	У	У	z	y'z	x+y'z
0	0	0	0	0	0
0	0	0	1	1	1
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	0	1	1	1
1	1	1	0	0	1
1	1	1	1	0	1
9/18/10					(c) S. Fels,

Simplification allows for different
implementations

• F = AB + C(D + E) = requires 3 levels of gates

9/18/10 (c) S. Fels, since 2010 20

2-level implementation

• F = AB + C(D + E) = AB + CD + CE

9/18/10 (c) S. Fels, since 2010 21

Canonical Forms

- Express all Boolean functions as one of two canonical forms
 - enumerates all combinations of variables as either
 - Sum of Products, i.e., m1 + m2 + m3 ... etc
 - Product of Sums, i.e., M1 M2 M3 ... etc
 - each variable appears in normal form (x) or its complement (x')
 - if it is a product it is called a MINTERM
 - if is is a sum it is called a MAXTERM
 - n variables -> 2ⁿ MINTERMS or MAXTERMS

- /-- /--

(c) S. Fels, since 2010

22

Canonical Forms

Table 2.3Minterms and Maxterms for Three Binary Variables

			М	interms	Maxterms			
x	y	z	Term	Designation	Term	Designation		
0	0	0	x'y'z'	m_0	x + y + z	M_0		
0	0	1	x'y'z	m_1	x + y + z'	M_1		
0	1	0	x'yz'	m_2	x + y' + z	M_2		
0	1	1	x'yz	m_3	x + y' + z'	M_3		
1	0	0	xy'z'	m_4	x' + y + z	M_4		
1	0	1	xy'z	m_5	x' + y + z'	M_5		
1	1	0	xyz'	m_6	x' + y' + z	M_6		
1	1	1	XYZ	m_7	x' + y' + z'	M_7		

9/18/10 (c) S. Fels, since 2010 23

Canonical Form Example

Table 2.4Functions of Three Variables

x	y	z	Function f_1	Function f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Canonical Form Example

Table 2.4 *Functions of Three Variables*

x	y	z	Function f_1		Functio	on f ₂
0	0	0	0		0	
0	0	1	1	m1	0	
0	1	0	0		0	
0	1	1	0		1	m3
1	0	0	1	m4	0	
1	0	1	0		1	m5
1	1	0	0		1	m6
1	1	1	1	m7	1	m7

Canonical Form Example: Sum of Products (Minterms)

- So we can read off of TT directly
- Sum of products is sum of Minterms

$$\sum m_i$$

$$F1 = m1 + m4 + m7$$

= x'y'z + xy'z' + xyz

F2 =
$$m3 + m5 + m6 + m7$$

= $x'yz + xy'z + xyz' + xyz$

(c) S. Fels, since 2010

Canonical Form Example

Table 2.4Functions of Three Variables

x	y	z	Functio	n <i>f</i> 1	Functio	n f ₂
0	0	0	0	M0	0	MO
0	0	1	1		0	M1
0	1	0	0	M2	0	M2
0	1	1	0	M3	1	
1	0	0	1		0	M4
1	0	1	0	M5	1	
1	1	0	0	M6	1	
1	1	1	1		1	

Canonical Form Example: Product of Sums (Maxterms)

- So we can read off of TT directly
- Product of sums is product of Maxterms $\prod M_i$

 $F1 = M0 \bullet M2 \bullet M3 \bullet M5 \bullet M6$ = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)F2 = $M0 \bullet M1 \bullet M2 \bullet M4$

= (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)

9/18/10

Converting between them

- You can use complement and deMorgan's theorem
 - if F=m1 + m3 + m5 i.e. $\Sigma(1, 3, 5)$ then
 - -F' = m0 + m2 + m4 + m6 + m7
 - F = (m0 + m2 + m4 + m6 +m7)'
 - use DeMorgan's now to get Product of Sum $F = \Pi(0,2,4,6,7)$
- Remember to include all Minterms/Maxterms
 - n variables, 2ⁿ terms

9/18/10

:) S. Fels, since 201

29

Standard form

- Sum of Products with one, two, three or more variables in product form
 - F1 = y' + xy + x'yz'

- Product of Sum with one, two, three or more variables in sum form

 $- F2 = x \bullet (y'+z) \bullet (x'+y+z')$

- Notice: canonical and standard form are 2-level implementations
- but may have many inputs for gate
 called fan-in; limited by pins on IC and manufacturing

9/18/10

) S. Fels, since 2010

30

Other logical operations

• for 2 input gates, you can have 16 different logic operations 2^{2^n} where n = 2

Table 2.7

Iruti	n Iab	bles for the 16 Functions of Two Binary Variables														
x	y	F ₀	F ₁	F ₂	F ₃	F4	F ₅	F ₆	F ₇	F ₈	F9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁ .

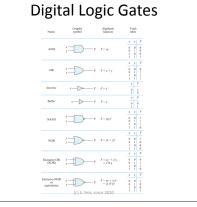
x	y	F ₀	F ₁	F ₂	F_3	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1		0						1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

(c) S. Fels, since 2010

Other logical operations

Boolean Functions	Operator Symbol	Name	Comments	
$F_0 = 0$		Null	Binary constant 0	
$F_1 = xy$	x · y	AND	x and y	
$F_2 = xy'$	x/y	Inhibition	x, but not y	
$F_3 = x$		Transfer	X	
$F_4 = x'y$	y/x	Inhibition	y, but not x	
$F_5 = y$		Transfer	y	
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both	
$F_7 = x + y$	x + y	OR	x or y	
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR	
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y	
$F_{10} = y'$	y'	Complement	Not y	
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x	
$F_{12} = x'$	x'	Complement	Not x	
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y	
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND	
$F_{15} = 1$		Identity	Binary constant 1	

(c) S. Fels, since 2010

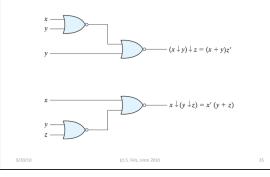


Extending to multiple inputs

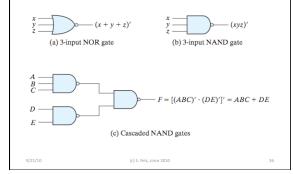
- works fine for
 - AND, OR; no problem commute and associate
 - NAND, NOR commute but don't associate $\ensuremath{\mathfrak{S}}$
 - $\bullet\,$ so, be careful when using them cascaded
 - - define multi-input NAND as multi-input AND that is inverted at the end
 - » x NAND y NAND z = (xyz)'
 define multi-input NOR as multi-input OR that is inverted at the end
 - » x NOR y NOR Z = (x+y+z)'

(c) S. Fels, since 2010

Extending to multiple inputs



Extending to multiple inputs



Summary	
 two-valued Boolean algebra supports switching logic simplification postulates and theorems 	
 digital logic gates Truth tables can be used to define function 	
Canonical and standard forms make it easy to create functions that can be implemented finite number of 2 input gates.	
 finite number of 2 input gates easy to implement larger complex functions 2 input gates can be extended to multiple inputs 	
9/21/10 (c) 5. Fels, since 2010 37	
9/21/10 (c) 5. Fels, since 2010 38	