Boolean Algebra and Logic Gates
Chapter 2

EECE 256

9/21/10

Topics

Definitions of Boolean Algebra

Axioms and Theorems of Boolean Algebra
— two valued Boolean Algebra

Boolean Functions

— simplification

Canonical forms

— minterm and maxterms

Other logic gates

Boolean Algebra

Allows us to define and simplify functions of
binary variables

Important for designers to create complex
circuits

— functions of computer

— ASIC devices

— programmable logic

— determine machine state transitions

9/21/10

Boolean Algebra

* Adheres to the laws of an algebra
— closure
— associative
— commutative
— identity
— inverse
— distributive
+ for addition (0 is identity)
o for multiplication (1 is identity)

Axioms of Boolean Algebra

closure for + and e
* |dentity:
x+0= x el=

* commutative

X+y= Xoy=yeXx
« distributive
x(y+z)= X+ (yz)=

Axioms of Boolean Algebra

¢ Complement
—x+x'=1 xex'=0
* two elements for Two-Valued Boolean Algebra
Oand1; 0!=1
AND =e, OR =+ , NOT = inverse
- check with Truth tables and you'll see it meets all the
axioms
* switching algebra (Shannon, 1928)
— basis of all digital computers
* Precedence:
— parentheses, NOT, AND, OR

Theorems and Properties of Boolean
Algebra

Table 2.1

Postu Theorems of Bo Algebra
Postulate 2 identity (a) x+0=ux
Postulate 5 complement (a) x+x =1
Theorem 1 idempotent (a) x+x=x
Theorem 2 0 and 1 ops (a) x+1=1
Theorem 3, involution () =x
Postulate 3, commutative (a) x+y=y+x

Theorem
Postulate 4, distributive
Theorem 5, DeMorgan
Theorem 6. absorption

ociative (x+y) +z
=xy + xz

x'y’

9/21/10

Theorems and Properties of Boolean
Algebra

Table 2.1

Theorems of Bo

Postulate 2 identity (a) x+0=

x
Postulate 5 complement (a) x+x =1

Theorem 1 idempotent (a) x+x=x

Theorem 2 0 and 1 ops (a) x+1=1

Theorem 3, involution (x') =x

Postulate 3, commutative (a) x+y=y+x
Theorem 4, associative @x+(y+z)=(x+y) +z
Postulate 4, distributive @ x(y+z)=xy+az
Theorem 5, DeMorgan @ (x+y) =xy
Theorem 6, absorption (@) x4 xy=x

Duality: interchange 0 for 1 and AND and OR

Theorems and Properties of Boolean
Algebra

Table 2.1

Theorems of Bo

Postulate 2 identity (a) x+0=

x (b
Postulate 5 complement (a) x+x =1 (b)
Theorem 1 idempotent (a) x+x=x (b) XX =x
Theorem 2 0 and 1 ops (a) x+1=1 (b) x:0=0
Theorem 3, involution (x') =x

3, commutative (a) x+y=y+x
associative =(x+y)+z

Postulate 4, distributive =xy+xz
Theorem 5, DeMorgan =xy

Theorem 6. absorption

Duality: interchange 0 for 1 and AND and OR

Theorems used to simplify complex functions of binary variables

Useful Theorems

« Simplification Theorems:
— X Y+X+Y =
— X+XY=
— (X+Y)-Y=
* DeMorgan’s Law:
— (X+Y) =
* Theorems for Multiplying and Factoring:
—(X+Y) (X +2Z) =X Z+X Y

* Proofs by algebra complicated
— use truth tables instead

9/21/10

Some algebraic proofs

Proving Theorems via axioms of Boolean Algebra:

e.g., Prove: XY+ XY =X
e.g., Prove: X+X-Y=X

e.g., Prove: (X+Y) s (X' +Z)=XZ+X Y

Some algebraic proofs

Proving Theorems via axioms of Boolean Algebra:
e.g., Prove: XY+ XY =X
LHS =X (Y+Y’) distributive
=X(1) complement
= X=RHS identity

e.g., Prove: X+X-Y=X
LHS =X (1+Y) distributive
=X(1) identity
=X =RHS

Some algebraic proofs

e.g., Prove: (X+Y)* (X' +Z)=X-Z+X *Y

LHS = (X+Y)X’ + (X+Y)Z distributive
=XX"+YX' +XZ +YZ distributive
=0+XY+XZ+YZ complement, associative, distributive
=X'Y(Z+Z)+XZ(Y+Y)+YZ(X+X) identity/complement
=X'YZ+X'YZ' + XYZ + XY'Z+XYZ +X'YZ distributive, associative
=XZ(Y+Y’) + X'Y(Z+Z') idempotent, associative, distributive
=XZ+XY =RHS complement

9/21/10

Some proofs using truth tables

DeMorgan’s Law X Y X v (X+Y) (X+Y) Xy
(X+Y) =X"-Y
0o 0 1 1
o 1 1 0
1 0 0 1
1 1.0 0
(XYY =X'+Y
X Y X Y (XaY) (XYY XY
(U] 1 1

Some proofs using truth tables

DeMorgan’s Law X Yy x Y (X+Y) (X+Yy XMy
(X+Y) =X"-Y

0o 0 1 1 0 1 1

o 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1.0 0 1 0 0
(XYY =X +Y

X Y X Y (XaY) (XYY XY

(U] 1 1 0 1 1

[1 0 0 1 1

1 0o 0 1 0 1 1

DeMorgan’s Thereom

Example:
Z=AB'C+A’BC+AB'C+ABC’
7' = (A+B+C’) * (A+B’+C’) = (A.....

9/21/10

Boolean Functions

* Now, we have everything to make Boolean
Functions

— F=f(x,y,z...) where x, y, z etc. are binary values
(0,1) with Boolean operators

— circuits can implement the function

— algebra used to simplify the function to make it
easier to implement

CEoxeyz Example
1
x y z Yz x+y'z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Example
* Fi=x+yz

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 o o0 1 >
1 0 1 1 1 P D

1 1 0 0 1

1 1 1 0 1

9/21/10

Simplification allows for different
implementations

*« F=AB+C(D+E)= requires 3 levels of gates

2-level implementation

*« F=AB+C(D+E)=AB+CD+CE

9/21/10

Canonical Forms

* Express all Boolean functions as one of two
canonical forms
— enumerates all combinations of variables as either
* Sum of Products, i.e.,, m1+m2 +m3 ... etc
* Product of Sums, i.e.,, M1 * M2 * M3 ... etc

— each variable appears in normal form (x) or its
complement (x’)

—if itis a product it is called a MINTERM
—ifisisasumitis called a MAXTERM
— n variables -> 2" MINTERMS or MAXTERMS

Canonical Forms
Table 2.3
Minterms and Maxterms for Three Binary Variables
Minterms Maxterms
x Yy z Term Designation Term Designation
0 0 0 mg My
0 0 1 m M,
0 1 0 my M,
0 1 1 m3 M
1 0 0 my My
1 0 1 X'z ms Ms
1 1 0 xy mg Mg
1 1 1 xyz my My
Canonical Form Example
Table 2.4

X y z Function f; Function £,

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Canonical Form Example

9/21/10

Table 2.4
X y z Function f; Function £,
0 0 0 0 0
0 0 1 I m1 0
0 1 0 0 0
0 1 1 0 1 m3
1 0 0 1 ma 0
1 0 1 0 1 ms
1 1 0 0 1 mé
1 1 1 1 m7 1 m7

Canonical Form Example: Sum of
Products (Minterms)

* So we can read off of TT directly
* Sum of products is sum of Minterms

S
Fl=ml+m4+m7

=Xy'z+xy'z’ +xyz

F2 =m3+m5+m6+m7
=X'yz+xy'z+xyz' +xyz

Canonical Form Example

Table 2.4

X y z Function f; Function £,
0 0 0 0 Mo 0 Mo
0 0 1 1 0 M
0 1 0 0 M 0 M2
0 1 1 0 M3 1

1 0 0 1 0 M4
1 0 1 0 M5 1

1 1 0 0 M6 1

1 1 1 1 1

Canonical Form Example: Product of
Sums (Maxterms)

* So we can read off of TT directly
¢ Product of sums is product of Maxterms

v

F1=MO* M2 M3 M5e*M6

=(x+y+z)(x+y +z)(x+y +2) (X +y+2')(X+y'+2)
F2 = MO*M1*M2*M4

= (X+y+z) (x+y+2") (x+y +2) (X +y+2)

9/21/10

Converting between them

* You can use complement and deMorgan’s
theorem
—if F=ml1+m3 +mb5i.e. 2(1, 3, 5) then
—F =m0+m2+m4+m6+m7
* F=(m0+m2+m4+m6+m7)
— use DeMorgan’s now to get Product of Sum
+ F=11(0,2,4,6,7)
Remember to include all Minterms/Maxterms
— nvariables, 2" terms

Standard form

* Sum of Products with one, two, three or more variables in product
form

— Fl=y +xy+xyz :D =

(@ Sumof Poducts

¢ Product of Sum with one, two, three or more variables in sum form
— F2=x°(y'+2) * (X'+y+Z’)

DD

© oo sums
* Notice: canonical and standard form are 2-level implementations
— but may have many inputs for gate
+ called fan-in; limited by pins on IC and manufacturing

10

Other logical operations

« for 2 input gates, you can have 16 different
logic operations ,2"where n =2

9/21/10

Table 2.7

Truth Tables for the 16 Functions of Two Binary Variables
x y | F F, i F5 F, Fs Fs F; Fg Fy Fio Fi1 Fiz Fi3 Fig Fis
0o o 0O 0 0o o0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0O 0 0 O 1 1 1 1 0O 0 0 O 1 1 1 1
1 0 0 0 1 1 0 0 1 I 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1

Other logical operations

ons for

the 16 Functions of Two Vari

iables

Operator
Boolean Functions Symbol Name Comments
Null Binary constant 0
X*y AND xandy
Wy Inhibition x, butnot y
Transfer x
V/x Inhibition ¥, but not x
Transfer y
x@y Exclusive-OR xor y, but not both
x+y OR xory
x|y NOR Not-OR
(x®y) Equivalence xequals y
Yy Complement Not y
xCy Implication If y, then x
X Complement Notx
XDy Implication If x, then y
xty NAND Not-AND
Identity Binary constant |

Digital Logic Gates

Dy il
or AL’ ror] : H
e T S—— ‘ :
B >t e (“ :‘
S) ST 8

son

11

Extending to multiple inputs

* works fine for

— AND, OR; no problem — commute and associate

— NAND, NOR — commute but don’t associate ®
* 5o, be careful when using them cascaded
* instead:

— define multi-input NAND as multi-input AND that is inverted at
the end

» x NAND y NAND z = (xyz)’

— define multi-input NOR as multi-input OR that is inverted at
the end

» X NORy NOR Z = (x+y+z)’

9/21/10

Extending to multiple inputs

y inlz=@+yz

iyl =x@+2)

Extending to multiple inputs

e

X
z

(a) 3-input NOR gate (b) 3-input NAND gate

=L
B
C
F=[(ABC) - (DE)') = ABC + DE
D,
E

(c) Cascaded NAND gates

12

Summary

two-valued Boolean algebra supports

— switching logic

— simplification postulates and theorems

— digital logic gates

Truth tables can be used to define function
Canonical and standard forms make it easy to
create functions that can be implemented

finite number of 2 input gates

— easy to implement larger complex functions

2 input gates can be extended to multiple inputs

9/21/10

13

