
 1 

UNIVERSITY OF BRITISH COLUMBIA 
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

 
EECE 259: Introduction to Microcomputers 

Solutions 1: Logic Gates, Binary Numbers and a Computational Datapath 
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PART 1:  Study Question SOLUTIONS 

4. Fill in the following table by writing the required values in both binary and decimal. Why 
is the minimum unsigned value not included in the table? 

 Maximum unsigned Maximum signed Minimum signed 
(negative numbers) 

4 bits (binary)     % 1111 
(decimal)   15 

(binary)    % 0111 
(decimal)   7 

(binary)    % 1000 
(decimal)   -8 

8 bits 
% 1111 1111 

255 
% 0111 1111 

127 
% 1000 0000 

–128 

16 bits 
% 1111 1111 1111 1111 

65,535 
% 0111 1111 1111 1111 

32,767 
% 1000 0000 0000 0000 

–32,768 

32 bits 
% 1111 1111 1111 1111 1111 1111 1111 1111 

4,294,967,295 
% 0111 1111 1111 1111 1111 1111 1111 1111 

2,147,483,647 
% 1000 0000 0000 0000 0000 0000 0000 0000 

–2,147,483,648 
 

5. Fill in the rest of the table. Use as many bits / digits as you need. Assuming unsigned. 

Decimal Binary (%) Hexadecimal ($) 
224110 % 1000 1100 0001 $ 8 C 1 
18610 % 1011 1010 $B A 

4187210 % 1010 0011 1001 0000 $ A 3 9 0 
197610 % 0111 1011 1000 $ 7 B 8 
3382510 % 1000 0100 0010 0001 $ 8 4 2 1 
4398110 % 1010 1011 1100 1101 $ A B C D 
383210 % 1110 1111 1000 $ E F 8 

 

6. Convert from hexadecimal to decimal, and back:  $1111, $BEEF, $CAFE, $F00D. 
Assuming unsigned. 
$1111 = 1*4096+1*256+1*16+1 = 4369 
  4319/16 = 269 rem 1 à $1, 
  269/16 = 16 rem 1 à $1, 
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  16/16 = 1 rem 1 à $1, 
  1/16 = 0 rem 1 à $1 
  Writing backwards è $1111 
$BEEF = 11*4096 + 14*256 + 14*16 + 15*1 = 48879 
  48879/16 = 3054 rem 15 à $F, 
  3054/16 = 190 rem 14 à $E, 
  190/16 = 11 rem 14, à $E, 
  11/16 = 0 rem 11 à $B 
  Writing backwards è $BEEF 
 $CAFE = 12 * 4096 + 10*256 + 15*16 + 14*1 = 51966 
  51966/16 = 3247 rem 14 à $E, 
  3247/16 = 202 rem 15 à $F, 
  202/16 = 12 rem 10 à $A, 
  12/16 = 0 rem 12 à $C 
  Writing backwards è $CAFE 
 $F00D = 15 * 4096 + 13*1 = 61453 
  61453/16 = 3840 rem 3 à $D, 
  3840/16 = 240 rem 0 à $0, 
  240/16 = 15 rem 0 à $0, 
  15/16 = 0 rem 15 à $F 
  Writing backwards è $F00D 
 

7. Determine the decimal number that results if: 
a. –13 is stored in an 8-bit signed number format and then interpreted (mistakenly) 

as an 8-bit unsigned number. 
First, determine that 13 in 8-bit binary is % 0000 1101. 
Next, take the two’s complement to determine that –13 = % 1111 0011. 
When interpreted as an unsigned number, the value is 128+64+32+16+2+1 = 243. 
The answer is 243. 

b. 253 is stored in memory as an 8-bit unsigned number and then interpreted 
(mistakenly) as an 8-bit signed number. 
First, determine that 253 in 8-bit binary à % 1111 1101. 
Since the MSB bit is a ‘1’, we know this is negative as a signed number. 
Determine the magnitude of the negative number by finding the two’s 
complement: % 0000 0011 = 3. 
The answer is –3 

c. 13 is stored in an 8-bit signed number format and just the lowest 4 bits are 
interpreted as a 4-bit signed value. 
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The value 13 in 8-bit signed binary is % 0000 1101. 
The lowest 4 bits are % 1101. This appears to be negative. The magnitude is 3. 
The answer is –3. 

d. –13 is stored in an 8-bit signed number format and just the lowest 4 bits are 
interpreted as a 4-bit signed value. 
The value of –13 in binary is the two’s complement of 13, or % 1111 0011. 
The lowest 4 bits are % 0011. 
The answer is 3. 

8. Perform sign extension for the following examples. 
a. Write the value of 4 in binary using 4 bits.  Extend this to an 8-bit value. 

The value 4 is %0100 in 4 bits. After extending this to 8 bits, 4 is %0000 0100. 
b. Write the value of –4 in binary using 4 bits. Extend this to an 8-bit value. 

The value –4 is %1100 in 4 bits. After extending this to 8 bits, –4 is %1111 1100. 
9. To convert a positive number to negative one in two’s complement, you invert all the bits 

and add 1. Try doing this for 8-bit values 0 and –128. What happens? Why? 
0 is % 0000 0000. Inverting gives % 1111 1111 and adding 1 gives % 0000 0000. 

So, the two’s complement of 0 is still 0. Some signed number systems can be confusing 
because they use two different binary values to represent +0 and –0. 

–128 = % 1000 0000. Inverting gives %0111 1111 and adding 1 gives %1000 0000. 
So, the two’s complement of –128 = –128. The expected value would be the magnitude 
or +128, but instead we get the “wrong” answer. This occurs because there is an 
overflow. All positive numbers can be expressed as a negative number in two’s 
complement form. However, the minimum / smallest / “most negative” number in two’s 
complement form does not have a matching positive counterpart. This can sometimes 
lead to unexpected results! 

10. Given a 4-bit adder that computes A+B, find a way of re-using that circuit by adding 
some additional logic so it will compute A–B. 

Observe that A–B = A+(–B) = A+ 1+B . Hence, you can compute A–B by using the 4-bit 
adder: A appears on one input, and B appears on the other input (use 4 NOT gates after 
B). You can get the +1 term by setting the initial carry-in of the adder to 1 instead of 0. 

11. The logic gates to produce carryout c1 of a full adder were shown in class. The logic for 
the carryout C flag was also given. Verify that these two equations are the same. Hint: 
you can create a truth table and verify that both C and c1 are the same, or you can 
manipulate the algebraic equations to show they are equivalent. Try it both ways! 

In class, we determined that C = 777777 rbraba ⋅+⋅+⋅  for 8-bit addition. We can replace 
r with s since they both represent the sum. If the numbers are only 1-bit wide, we would 
find C = c1 = 000000 sbsaba ⋅+⋅+⋅ . Also, remember the sum bit is s0 = a0⊕b0⊕c0. 
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By inspecting the Full Adder and Half Adder schematics, you can see the carry-out for 
the full adder is c1' = a0⋅b0 + c0⋅(a0⊕b0). 

The goal now is to show that c1 = c1' using either a truth table or algebraic manipulation. 
For the truth table approach, create a truth table with a0, b0 and c0 as inputs. Compute s0 
and c1 according to s0 = (a0⊕b0⊕c0) and c1 = 000000 sbsaba ⋅+⋅+⋅ . Also, compute c1' = 
a0⋅b0 + c0⋅(a0⊕b0). Note the two columns (c1 and c1') are identical, so you are done! 

a0 b0 c0 s0 c1 c1' 
0 0 0 0 0 0 
0 0 1 1 0 0 
0 1 0 1 0 0 
0 1 1 0 1 1 
1 0 0 1 0 0 
1 0 1 0 1 1 
1 1 0 0 1 1 
1 1 1 1 1 1 

Algebraic manipulation is trickier. Start with c1 = 000000 sbsaba ⋅+⋅+⋅  and plug in the 
value for s0 = a0⊕b0⊕c0 to get an ugly mess. Then show that c1 = c1'. You won’t have to 
do something this hard for the quiz or exam, so I’ll put the solution in a separate page. 

12. In class, you were given the logic to detect overflows while adding two signed numbers 
(Vadd= 777777 rbarba ⋅⋅+⋅⋅ ). Using a similar approach, design logic for subtracting two 
signed numbers, that is compute Vsub for the operation A–B. 

 Vsub = 777777 rbarba ⋅⋅+⋅⋅  

13. Summarize the logic expression for each flag. Keep in mind that N and Z only look at the 
result bits, r7 to r0. Expressions for Vadd and N are given as examples. 

a. C = 777777 rbraba ⋅+⋅+⋅  

b. B = 777777 rarbba ⋅+⋅+⋅  

c. Vadd = 777777 rbarba ⋅⋅+⋅⋅  

d. Vsub = 777777 rbarba ⋅⋅+⋅⋅  

e. N = r7 

f. Z = 01234567 rrrrrrrr ⋅⋅⋅⋅⋅⋅⋅  
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14. (Long, but you need practice!). Perform each of the operations in the table below. 
Express the answer in binary, decimal, and hexadecimal, and give ALL flags: Z, N, Vsub, 
Vadd, B and C using the logic equations from problem 14. The first row is done for you. 
Hint: the flags are merely logic equations that don’t care which operation is being 
performed. 

Operation 
Results 

Binary Decimal Hex C B Vadd Vsub Z N 
a. 114 + 24 % 1000 1010 13810  $ 8 A 0 1 1 0 0 1 
b. $37 + $34 % 0 1 1 0   1 0 1 1 107 $6 B 0 0 0 0 0 0 
c. $37 + $44 % 0 1 1 1   1 0 1 1 123 $7 B 0 0 0 0 0 0 
d. $13 + $EC % 1 1 1 1   1 1 1 1 255 (-1) $F F 0 1 0 1 0 1 
e. $13 + $ED % 0 0 0 0   0 0 0 0 0 $0 0 1 1 0 0 1 0 
f. $13 + $EE % 0 0 0 0   0 0 0 1 1 $0 1 1 1 0 0 0 0 
g. $83 + $96 % 0 0 0 1   1 0 0 1 25 $1 9 1 0 1 0 0 0 
h. $F0 + $02 % 1 1 1 1   0 0 1 0 242 (-14) $F 2 0 0 0 0 0 1 
i. $24 – $3B % 1 1 1 0   1 0 0 1 233 (-23) $E 9 0 1 1 0 0 1 
j. $FD – $07 % 1 1 1 1   0 1 1 0 246 (-10) $F 6 0 0 0 0 0 1 
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11. b) Algebraic solution 

i) In class, we determined that C = 777777 rbraba ⋅+⋅+⋅  for 8-bit addition. We can 
replace r with s since they both represent the sum. If the numbers are only 1-bit wide, we 
would find C = c1 = 000000 sbsaba ⋅+⋅+⋅ . Also, remember the sum bit is s0 = a0⊕b0⊕c0. 

ii) By inspecting the Full Adder and Half Adder schematics, you can see the carry-out for 
the full adder is c1' = a0⋅b0 + c0⋅(a0⊕b0). 

iii) The goal below is to show that c1 = c1' using algebraic manipulation. 
 

Start with c1 = 000000 sbsaba ⋅+⋅+⋅ , and manipulate it to show that c1 = c1'. 

Notice  s0 = a0⊕b0⊕c0  à  0s = s0⊕1  à  a0 0s  = a0(a0⊕b0⊕c0⊕1). 

 If a0 = 0 then a0 0s = 0. In that case, the a0 0s  term is unable to set c1 = 1. 

 If a0 = 1, then a0 0s  = a0(a0⊕b0⊕c0⊕1) = 1(1⊕b0⊕c0⊕1) = b0⊕c0. 

 Hence, we can simplify a0 0s = a0(b0⊕c0). 

Similarly, the b0 0s  term in c1 can be simplified to b0 0s  = b0(a0⊕c0). 

 
Rewriting c1 becomes:  

 c1 = a0b0 + a0(b0⊕c0) + b0(a0⊕c0) 

     = a0b0 + a0(b0 0c + 0b c0) + b0(a0 0c + 0a c0 ) 

     = a0b0 + a0b0 0c + a0 0b c0 + a0b0 0c + 0a b0c0  

     = a0b0 + a0b0 0c + a0b0 0c + c0(a0 0b  + 0a b0 ) 

     = a0b0(1+ 0c + 0c ) + c0(a0⊕b0) 

     = c1' 
Since c1 = c1', the notes are correct. 
 

You won’t have to do something this hard for the quiz or exam. 
 

 


