UNIVERSITY OF BRITISH COLUMBIA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EECE 259: Introduction to Microcomputers

Solutions 1: Logic Gates, Binary Numbers and a Computational Datapath Solutions handed out Jan. 19, 2011

PART 1: Study Question SOLUTIONS

4. Fill in the following table by writing the required values in both binary and decimal. Why is the minimum unsigned value not included in the table?

	Maximum unsigned	Maximum signed	Minimum signed (negative numbers)
4 bits	(binary) $\% 1111$ (decimal) 15	$\text { (binary) \% } 0111$ $\text { (decimal) } 7$	$\begin{array}{ll} \text { (binary) } & \% 1000 \\ (\text { decimal }) & -8 \end{array}$
8 bits	$\begin{gathered} \% 11111111 \\ 255 \end{gathered}$	$\begin{gathered} \% 01111111 \\ 127 \end{gathered}$	$\begin{gathered} \% 10000000 \\ -128 \end{gathered}$
16 bits	$\begin{gathered} \% 1111111111111111 \\ 65,535 \end{gathered}$	$\begin{gathered} \% 0111111111111111 \\ 32,767 \end{gathered}$	$\begin{gathered} \% 1000000000000000 \\ -32,768 \end{gathered}$
32 bits	\% 1111111111111111111111111111111	\%01111111111111111111111111111111 $2,147,483,647$	$\% 10000000000000000000000000000000$ $-2,147,483,648$

5. Fill in the rest of the table. Use as many bits / digits as you need. Assuming unsigned.

Decimal	Binary (\%)	Hexadecimal (\$)
2241_{10}	$\% 100011000001$	$\$ 8$ C 1
186_{10}	$\% 10111010$	\$B A
41872_{10}	$\% 1010001110010000$	$\$$ A 3 9 0
1976_{10}	$\% 011110111000$	$\$ 7$ B 8
33825_{10}	$\% 1000010000100001$	\$8 4 2 1
43981_{10}	$\% 1010101111001101$	\$ A B C D
3832_{10}	$\% 111011111000$	\$ E F 8

6. Convert from hexadecimal to decimal, and back: \$1111, \$BEEF, \$CAFE, \$F00D.

Assuming unsigned.

$$
\begin{gathered}
\$ 1111=1 * 4096+1 * 256+1 * 16+1=4369 \\
4319 / 16=269 \mathrm{rem} \underline{1} \rightarrow \$ 1, \\
269 / 16=16 \mathrm{rem} \underline{1} \rightarrow \$ 1,
\end{gathered}
$$

$$
\begin{aligned}
& 16 / 16=1 \mathrm{rem} \underline{1} \rightarrow \$ 1, \\
& 1 / 16=0 \text { rem } \underline{1} \rightarrow \$ 1 \\
& \text { Writing backwards } \rightarrow \$ 1111 \\
& \$ B E E F=11 * 4096+14^{*} 256+14 * 16+15^{*} 1=48879 \\
& 48879 / 16=3054 \text { rem } \underline{15} \rightarrow \$ F, \\
& 3054 / 16=190 \text { rem } \underline{14} \rightarrow \$ E, \\
& 190 / 16=11 \text { rem } \underline{4}, \rightarrow \$ E, \\
& 11 / 16=0 \text { rem } 11 \rightarrow \$ B \\
& \text { Writing backwards } \rightarrow \$ B E E F \\
& \$ C A F E=12 * 4096+10 * 256+15^{*} 16+14^{*} 1=51966 \\
& 51966 / 16=3247 \text { rem } 14 \rightarrow \$ E, \\
& 3247 / 16=202 \text { rem } 15 \rightarrow \$ F, \\
& 202 / 16=12 \text { rem } 10 \rightarrow \$ A, \\
& 12 / 16=0 \text { rem } 12 \rightarrow \$ \mathrm{C} \\
& \text { Writing backwards } \rightarrow \$ \mathrm{CAFE} \\
& \$ F 00 \mathrm{D}=15 * 4096+13 * 1=61453 \\
& 61453 / 16=3840 \text { rem } 3 \rightarrow \$ \mathrm{D}, \\
& 3840 / 16=240 \text { rem } 0 \rightarrow \$ 0, \\
& 240 / 16=15 \text { rem } 0 \rightarrow \$ 0, \\
& 15 / 16=0 \text { rem } 15 \rightarrow \$ F \\
& \text { Writing backwards } \rightarrow \$ F 00 \mathrm{D}
\end{aligned}
$$

7. Determine the decimal number that results if:
a. -13 is stored in an 8 -bit signed number format and then interpreted (mistakenly) as an 8-bit unsigned number.
First, determine that 13 in 8 -bit binary is $\% 00001101$.
Next, take the two's complement to determine that $-13=\% 11110011$.
When interpreted as an unsigned number, the value is $128+64+32+16+2+1=243$.
The answer is 243.
b. 253 is stored in memory as an 8-bit unsigned number and then interpreted (mistakenly) as an 8 -bit signed number.
First, determine that 253 in 8-bit binary $\rightarrow \% 11111101$.
Since the MSB bit is a ' 1 ', we know this is negative as a signed number.
Determine the magnitude of the negative number by finding the two's complement: $\% 00000011=3$.
The answer is $\mathbf{- 3}$
c. 13 is stored in an 8 -bit signed number format and just the lowest 4 bits are interpreted as a 4-bit signed value.

The value 13 in 8 -bit signed binary is $\% 00001101$.
The lowest 4 bits are $\% 1101$. This appears to be negative. The magnitude is 3 .

The answer is $\mathbf{- 3}$.

d. -13 is stored in an 8 -bit signed number format and just the lowest 4 bits are interpreted as a 4-bit signed value.
The value of -13 in binary is the two's complement of 13 , or $\% 11110011$.
The lowest 4 bits are $\% 0011$.
The answer is 3.
8. Perform sign extension for the following examples.
a. Write the value of 4 in binary using 4 bits. Extend this to an 8 -bit value.

The value 4 is $\% 0100$ in 4 bits. After extending this to 8 bits, 4 is $\% 00000100$.
b. Write the value of -4 in binary using 4 bits. Extend this to an 8 -bit value.

The value -4 is $\% 1100$ in 4 bits. After extending this to 8 bits, -4 is $\% 11111100$.
9. To convert a positive number to negative one in two's complement, you invert all the bits and add 1 . Try doing this for 8 -bit values 0 and -128 . What happens? Why?
0 is \% 00000000 . Inverting gives \% 11111111 and adding 1 gives $\% 00000000$.
So, the two's complement of 0 is still 0 . Some signed number systems can be confusing because they use two different binary values to represent +0 and -0 .
$-128=\% 10000000$. Inverting gives \%0111 1111 and adding 1 gives \%1000 0000.
So, the two's complement of $-128=-128$. The expected value would be the magnitude or +128 , but instead we get the "wrong" answer. This occurs because there is an overflow. All positive numbers can be expressed as a negative number in two's complement form. However, the minimum / smallest / "most negative" number in two's complement form does not have a matching positive counterpart. This can sometimes lead to unexpected results!
10. Given a 4-bit adder that computes $\mathrm{A}+\mathrm{B}$, find a way of re-using that circuit by adding some additional logic so it will compute $\mathrm{A}-\mathrm{B}$.

Observe that $A-B=A+(-B)=A+\bar{B}+1$. Hence, you can compute $A-B$ by using the 4 -bit adder: A appears on one input, and \bar{B} appears on the other input (use 4 NOT gates after $B)$. You can get the +1 term by setting the initial carry-in of the adder to 1 instead of 0 .
11. The logic gates to produce carryout c_{1} of a full adder were shown in class. The logic for the carryout C flag was also given. Verify that these two equations are the same. Hint: you can create a truth table and verify that both \mathbf{C} and c_{1} are the same, or you can manipulate the algebraic equations to show they are equivalent. Try it both ways!
In class, we determined that $\mathrm{C}=a_{7} \cdot b_{7}+a_{7} \cdot \bar{r}_{7}+b_{7} \cdot \bar{r}_{7}$ for 8 -bit addition. We can replace r with s since they both represent the sum. If the numbers are only 1-bit wide, we would find $\mathrm{C}=c_{1}=a_{0} \cdot b_{0}+a_{0} \cdot \overline{s_{0}}+b_{0} \cdot \overline{s_{0}}$. Also, remember the sum bit is $s_{0}=a_{0} \oplus b_{0} \oplus c_{0}$.

By inspecting the Full Adder and Half Adder schematics, you can see the carry-out for the full adder is $c_{1}{ }^{\prime}=a_{0} \cdot b_{0}+c_{0} \cdot\left(a_{0} \oplus b_{0}\right)$.

The goal now is to show that $c_{l}=c_{1}^{\prime}$ using either a truth table or algebraic manipulation.
For the truth table approach, create a truth table with a_{0}, b_{0} and c_{0} as inputs. Compute s_{0} and c_{1} according to $s_{0}=\left(a_{0} \oplus b_{0} \oplus c_{0}\right)$ and $c_{1}=a_{0} \cdot b_{0}+a_{0} \cdot \overline{s_{0}}+b_{0} \cdot \overline{s_{0}}$. Also, compute $c_{1}{ }^{\prime}=$ $a_{0} \cdot b_{0}+c_{0} \cdot\left(a_{0} \oplus b_{0}\right)$. Note the two columns (c_{1} and $\left.c_{l}{ }^{\prime}\right)$ are identical, so you are done!

$\boldsymbol{a}_{\boldsymbol{0}}$	$\boldsymbol{b}_{\boldsymbol{0}}$	$\boldsymbol{c}_{\boldsymbol{0}}$	$\boldsymbol{s}_{\boldsymbol{0}}$	$\boldsymbol{c}_{\boldsymbol{I}}$	$\boldsymbol{c}_{\boldsymbol{1}}{ }^{\boldsymbol{1}}$
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	1	1

Algebraic manipulation is trickier. Start with $c_{1}=a_{0} \cdot b_{0}+a_{0} \cdot \overline{s_{0}}+b_{0} \cdot \overline{s_{0}}$ and plug in the value for $s_{0}=a_{0} \oplus b_{0} \oplus c_{0}$ to get an ugly mess. Then show that $c_{l}=c_{l}{ }^{\prime}$. You won’t have to do something this hard for the quiz or exam, so I'll put the solution in a separate page.
12. In class, you were given the logic to detect overflows while adding two signed numbers $\left(\mathrm{V}_{\text {add }}=\overline{a_{7}} \cdot \overline{b_{7}} \cdot r_{7}+a_{7} \cdot b_{7} \cdot \overline{r_{7}}\right)$. Using a similar approach, design logic for subtracting two signed numbers, that is compute $\mathrm{V}_{\text {sub }}$ for the operation $\mathrm{A}-\mathrm{B}$.

$$
\mathrm{V}_{\mathrm{sub}}=a_{7} \cdot \overline{b_{7}} \cdot \overline{r_{7}}+\overline{a_{7}} \cdot b_{7} \cdot r_{7}
$$

13. Summarize the logic expression for each flag. Keep in mind that N and Z only look at the result bits, r_{7} to r_{0}. Expressions for $\mathrm{V}_{\text {add }}$ and N are given as examples.
a. $\mathrm{C}=a_{7} \cdot b_{7}+a_{7} \cdot \bar{r}_{7}+b_{7} \cdot \bar{r}_{7}$
b. $\mathrm{B}=\overline{a_{7}} \cdot b_{7}+b_{7} \cdot r_{7}+\overline{a_{7}} \cdot r_{7}$
c. $\mathrm{V}_{\mathrm{add}}=\overline{a_{7}} \cdot \overline{b_{7}} \cdot r_{7}+a_{7} \cdot b_{7} \cdot \overline{r_{7}}$
d. $\mathrm{V}_{\mathrm{sub}}=a_{7} \cdot \overline{b_{7}} \cdot \overline{r_{7}}+\overline{a_{7}} \cdot b_{7} \cdot r_{7}$
e. $\mathrm{N}=r_{7}$
f. $\mathrm{Z}=\bar{r}_{7} \cdot \bar{r}_{6} \cdot \bar{r}_{5} \cdot \bar{r}_{4} \cdot \bar{r}_{3} \cdot \bar{r}_{2} \cdot \bar{r}_{1} \cdot \bar{r}_{0}$
14. (Long, but you need practice!). Perform each of the operations in the table below. Express the answer in binary, decimal, and hexadecimal, and give ALL flags: $\mathrm{Z}, \mathrm{N}, \mathrm{V}_{\text {sub }}$, $\mathrm{V}_{\text {add }}, \mathrm{B}$ and C using the logic equations from problem 14. The first row is done for you.
Hint: the flags are merely logic equations that don't care which operation is being performed.

Operation	Results								
	Binary	Decimal	Hex	C	B			Z	N
a. $114+24$	\% 10001010	13810	\$8 A	0	1	1	0	0	1
b. $\$ 37+\$ 34$	\% 01101011	107	\$6 B	0	0	0	0	0	0
c. $\$ 37+\$ 44$	\% 01111011	123	\$7 B	0	0	0	0	0	0
d. $\$ 13+\$ E C$	\% 11111111	255 (-1)	\$F F	0	1	0	1	0	1
e. $\$ 13+\$ E D$	$\% 0000000$	0	\$0 0	1	1	0	0	1	0
f. $\$ 13+\$ E E$	$\% 00000001$	1	\$0 1	1	1	0	0	0	0
g. $\$ 83+\$ 96$	$\% 00011001$	25	\$19	1	0	1	0	0	0
h. $\quad \$ \mathrm{~F} 0+\$ 02$	\% 11110010	242 (-14)	\$F 2	0	0	0	0	0	1
i. $\quad \$ 24-\$ 3 \mathrm{~B}$	\% 11101001	233 (-23)	\$E 9	0	1	1	0	0	1
j. $\quad \$$ FD $-\$ 07$	\% 11110110	246 (-10)	\$F 6	0	0	0	0	0	1

11. b) Algebraic solution

i) In class, we determined that $\mathrm{C}=a_{7} \cdot b_{7}+a_{7} \cdot \bar{r}_{7}+b_{7} \cdot \bar{r}_{7}$ for 8 -bit addition. We can replace r with s since they both represent the sum. If the numbers are only 1 -bit wide, we would find $\mathrm{C}=c_{l}=a_{0} \cdot b_{0}+a_{0} \cdot \overline{s_{0}}+b_{0} \cdot \overline{s_{0}}$. Also, remember the sum bit is $s_{0}=a_{0} \oplus b_{0} \oplus c_{0}$.
ii) By inspecting the Full Adder and Half Adder schematics, you can see the carry-out for the full adder is $c_{1}{ }^{\prime}=a_{0} \cdot b_{0}+c_{0} \cdot\left(a_{0} \oplus b_{0}\right)$.
iii) The goal below is to show that $c_{l}=c_{l}{ }^{\prime}$ using algebraic manipulation.

Start with $c_{l}=a_{0} \cdot b_{0}+a_{0} \cdot \overline{s_{0}}+b_{0} \cdot \overline{s_{0}}$, and manipulate it to show that $c_{l}=c_{l}$ '.
Notice $s_{0}=a_{0} \oplus b_{0} \oplus c_{0} \rightarrow \overline{s_{0}}=s_{0} \oplus 1 \rightarrow a_{0} \bar{s}_{0}=a_{0}\left(a_{0} \oplus b_{0} \oplus c_{0} \oplus 1\right)$.
If $a_{0}=0$ then $a_{0} \bar{s}_{0}=0$. In that case, the $a_{0} \overline{s_{0}}$ term is unable to set $c_{l}=1$.
If $a_{0}=1$, then $a_{0} \bar{s}_{0}=a_{0}\left(a_{0} \oplus b_{0} \oplus c_{0} \oplus 1\right)=1\left(1 \oplus b_{0} \oplus c_{0} \oplus 1\right)=b_{0} \oplus c_{0}$.
Hence, we can simplify $a_{0} s_{0}=a_{0}\left(b_{0} \oplus c_{0}\right)$.
Similarly, the $b_{0} \overline{s_{0}}$ term in c_{I} can be simplified to $b_{0} \overline{s_{0}}=b_{0}\left(a_{0} \oplus c_{0}\right)$.

Rewriting c_{l} becomes:

$$
\begin{aligned}
c_{1} & =a_{0} b_{0}+a_{0}\left(b_{0} \oplus c_{0}\right)+b_{0}\left(a_{0} \oplus c_{0}\right) \\
& =a_{0} b_{0}+a_{0}\left(b_{0} \overline{c_{0}}+\overline{b_{0}} c_{0}\right)+b_{0}\left(a_{0} \overline{c_{0}}+\overline{a_{0}} c_{0}\right) \\
& =a_{0} b_{0}+a_{0} b_{0} \overline{c_{0}}+a_{0} \overline{b_{0}} c_{0}+a_{0} b_{0} \overline{c_{0}}+\overline{a_{0}} b_{0} c_{0} \\
& =a_{0} b_{0}+a_{0} b_{0} \overline{c_{0}}+a_{0} b_{0} \overline{c_{0}}+c_{0}\left(a_{0} \overline{b_{0}}+\overline{a_{0}} b_{0}\right) \\
& =a_{0} b_{0}\left(1+\overline{c_{0}}+\overline{c_{0}}\right)+c_{0}\left(a_{0} \oplus b_{0}\right) \\
& =c_{1}^{\prime}
\end{aligned}
$$

Since $c_{l}=c_{l}{ }^{\prime}$, the notes are correct.

You won't have to do something this hard for the quiz or exam.

