UNIVERSITY OF BRITISH COLUMBIA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EECE 259: Introduction to Microcomputers Solutions 1: Logic Gates, Binary Numbers and a Computational Datapath Solutions handed out Jan. 19, 2011

PART 1: Study Question SOLUTIONS

4. Fill in the following table by writing the required values in both binary and decimal. Why is the minimum unsigned value not included in the table?

	Maximum unsigned	Maximum signed	Minimum signed (negative numbers)				
4 bits	(binary) %1111 (decimal) 15	(binary) % 0111 (decimal) 7	(binary) % 1000 (decimal) -8				
8 bits	<mark>% 1111 1111</mark> 255	<mark>% 0111 1111</mark> 127	<mark>% 1000 0000</mark> -128				
16 bits	<mark>% 1111 1111 1111 1111 1111 65,535</mark>	% 0111 1111 1111 1111 32,767	<mark>% 1000 0000 0000 0000 -32,768</mark>				
32 bits	<mark>% 1111 1111 1111 1111 1111 1111 1111 1</mark>	<mark>% 0111 1111 1111 1111 1111 1111 1111 11</mark>	% 1000 0000 0000 0000 0000 0000 0000 00				

5. Fill in the rest of the table. Use as many bits / digits as you need. Assuming unsigned.

Decimal	Binary (%)	Hexadecimal (\$)
2241 ₁₀	% 1000 1100 0001	\$ 8 C 1
18610	<mark>% 1011 1010</mark>	<mark>\$B A</mark>
41872_{10}	<mark>% 1010 0011 1001 0000</mark>	<mark>\$ A 3 9 0</mark>
<mark>1976₁₀</mark>	% 0111 1011 1000	<mark>\$ 7 B 8</mark>
33825 ₁₀	% 1000 0100 0010 0001	<mark>\$ 8 4 2 1</mark>
<mark>43981₁₀</mark>	<mark>% 1010 1011 1100 1101</mark>	\$ A B C D
<mark>3832₁₀</mark>	<mark>% 1110 1111 1000</mark>	\$ E F 8

6. Convert from hexadecimal to decimal, and back: \$1111, \$BEEF, \$CAFE, \$F00D.

Assuming unsigned.

1111 = 1*4096+1*256+1*16+1 = 4369 $4319/16 = 269 \text{ rem } 1 \rightarrow $1,$ $269/16 = 16 \text{ rem } 1 \rightarrow $1,$

```
16/16 = 1 \text{ rem } 1 \rightarrow \$1
     1/16 = 0 \text{ rem } 1 \rightarrow \$1
     Writing backwards 

$BEEF = 11*4096 + 14*256 + 14*16 + 15*1 = 48879
     48879/16 = 3054 \text{ rem } 15 \rightarrow \text{\$F}.
     3054/16 = 190 \text{ rem } 14 \rightarrow \$E
     190/16 = 11 \text{ rem } 14, \rightarrow \$E,
     11/16 = 0 \text{ rem } 11 \rightarrow B
     Writing backwards 
SBEEF
 $CAFE = 12 * 4096 + 10*256 + 15*16 + 14*1 = 51966
     51966/16 = 3247 \text{ rem } 14 \rightarrow \$E
     3247/16 = 202 \text{ rem } 15 \rightarrow \text{\$F},
     202/16 = 12 \text{ rem } 10 \rightarrow \text{$A},
     12/16 = 0 \text{ rem } 12 \rightarrow \text{\$C}
     Writing backwards 

 F00D = 15 * 4096 + 13*1 = 61453
     61453/16 = 3840 \text{ rem } 3 \rightarrow \text{$D},
     3840/16 = 240 \text{ rem } 0 \rightarrow \$0,
     240/16 = 15 \text{ rem } 0 \rightarrow \$0
     15/16 = 0 \text{ rem } 15 \rightarrow F
     Writing backwards -> $F00D
```

- 7. Determine the decimal number that results if:
 - a. -13 is stored in an 8-bit signed number format and then interpreted (mistakenly) as an 8-bit unsigned number.

```
First, determine that 13 in 8-bit binary is % 0000 1101.
Next, take the two's complement to determine that -13 = \% 1111 0011.
When interpreted as an unsigned number, the value is 128+64+32+16+2+1 = 243.
The answer is 243.
```

b. 253 is stored in memory as an 8-bit unsigned number and then interpreted (mistakenly) as an 8-bit signed number.

```
First, determine that 253 in 8-bit binary \rightarrow % 1111 1101.
Since the MSB bit is a '1', we know this is negative as a signed number.
Determine the magnitude of the negative number by finding the two's
complement: % 0000 0011 = 3.
The answer is -3
```

c. 13 is stored in an 8-bit signed number format and just the lowest 4 bits are interpreted as a 4-bit signed value.

The value 13 in 8-bit signed binary is % 0000 1101.

The lowest 4 bits are % 1101. This appears to be negative. The magnitude is 3. **The answer is -3.**

d. -13 is stored in an 8-bit signed number format and just the lowest 4 bits are interpreted as a 4-bit signed value.

The value of -13 in binary is the two's complement of 13, or % 1111 0011. The lowest 4 bits are % 0011.

The answer is 3.

- 8. Perform sign extension for the following examples.
 - a. Write the value of 4 in binary using 4 bits. Extend this to an 8-bit value.The value 4 is %0100 in 4 bits. After extending this to 8 bits, 4 is %0000 0100.
 - b. Write the value of -4 in binary using 4 bits. Extend this to an 8-bit value.

The value –4 is %1100 in 4 bits. After extending this to 8 bits, –4 is %1111 1100.

9. To convert a positive number to negative one in two's complement, you invert all the bits and add 1. Try doing this for 8-bit values 0 and -128. What happens? Why?

0 is % 0000 0000. Inverting gives % 1111 1111 and adding 1 gives % 0000 0000.

So, the two's complement of 0 is still 0. Some signed number systems can be confusing because they use two different binary values to represent +0 and -0.

-128 = % 1000 0000. Inverting gives %0111 1111 and adding 1 gives %1000 0000.

So, the two's complement of -128 = -128. The expected value would be the magnitude or +128, but instead we get the "wrong" answer. This occurs because there is an overflow. All positive numbers can be expressed as a negative number in two's complement form. However, the minimum / smallest / "most negative" number in two's complement form does not have a matching positive counterpart. This can sometimes lead to unexpected results!

10. Given a 4-bit adder that computes A+B, find a way of re-using that circuit by adding some additional logic so it will compute A–B.

Observe that A-B = A+(-B) = A+B+1. Hence, you can compute A-B by using the 4-bit adder: A appears on one input, and \overline{B} appears on the other input (use 4 NOT gates after B). You can get the +1 term by setting the <u>initial carry-in</u> of the adder to 1 instead of 0.

11. The logic gates to produce carryout c₁ of a *full adder* were shown in class. The logic for the carryout C flag was also given. <u>Verify that these two equations are the same</u>. *Hint*: you can create a truth table and verify that both C and c₁ are the same, or you can manipulate the algebraic equations to show they are equivalent. Try it both ways!

In class, we determined that $C = a_7 \cdot b_7 + a_7 \cdot \overline{r_7} + b_7 \cdot \overline{r_7}$ for 8-bit addition. We can replace r with s since they both represent the sum. If the numbers are only 1-bit wide, we would find $C = c_1 = a_0 \cdot b_0 + a_0 \cdot \overline{s_0} + b_0 \cdot \overline{s_0}$. Also, remember the sum bit is $s_0 = a_0 \oplus b_0 \oplus c_0$.

By inspecting the Full Adder and Half Adder schematics, you can see the carry-out for the full adder is $c_1' = a_0 \cdot b_0 + c_0 \cdot (a_0 \oplus b_0)$.

The goal now is to show that $c_1 = c_1'$ using either a *truth table* or *algebraic manipulation*. For the *truth table* approach, create a truth table with a_0 , b_0 and c_0 as inputs. Compute s_0 and c_1 according to $s_0 = (a_0 \oplus b_0 \oplus c_0)$ and $c_1 = a_0 \cdot b_0 + a_0 \cdot \overline{s_0} + b_0 \cdot \overline{s_0}$. Also, compute $c_1' = a_0 \cdot b_0 + c_0 \cdot (a_0 \oplus b_0)$. Note the two columns (c_1 and c_1') are identical, so you are done!

a_0	<mark>b₀</mark>	C ₀	<mark>S0</mark>	<u>c1</u>	c_{I}
<mark>0</mark>	0	<mark>0</mark>	<mark>0</mark>	0	0
<mark>0</mark>	<mark>0</mark>	1	1	0	0
<mark>0</mark>	1	<mark>0</mark>	1	0	0
0	1	1	0	1	1
1	<mark>0</mark>	0	1	0	0
1	<mark>0</mark>	1	0	1	1
1	1	0	0	1	1
1	1	1	1	1	1

Algebraic manipulation is trickier. Start with $c_1 = a_0 \cdot b_0 + a_0 \cdot \overline{s_0} + b_0 \cdot \overline{s_0}$ and plug in the value for $s_0 = a_0 \oplus b_0 \oplus c_0$ to get an ugly mess. Then show that $c_1 = c_1$. You won't have to do something this hard for the quiz or exam, so I'll put the solution in a separate page.

12. In class, you were given the logic to detect overflows while *adding* two signed numbers $(V_{add} = \overline{a_7} \cdot \overline{b_7} \cdot r_7 + a_7 \cdot \overline{b_7} \cdot \overline{r_7})$. Using a similar approach, design logic for *subtracting* two signed numbers, that is compute V_{sub} for the operation A–B.

 $\mathbf{V}_{\rm sub} = a_{\gamma} \cdot \overline{b_{\gamma}} \cdot \overline{r_{\gamma}} + \overline{a_{\gamma}} \cdot b_{\gamma} \cdot r_{\gamma}$

13. Summarize the logic expression for each flag. Keep in mind that N and Z only look at the result bits, r_7 to r_0 . Expressions for V_{add} and N are given as examples.

a.
$$C = a_7 \cdot b_7 + a_7 \cdot \overline{r_7} + b_7 \cdot \overline{r_7}$$

b. $B = \overline{a_7} \cdot b_7 + b_7 \cdot r_7 + \overline{a_7} \cdot r_7$
c. $V_{add} = \overline{a_7} \cdot \overline{b_7} \cdot r_7 + a_7 \cdot b_7 \cdot \overline{r_7}$
d. $V_{sub} = a_7 \cdot \overline{b_7} \cdot \overline{r_7} + \overline{a_7} \cdot b_7 \cdot r_7$
e. $N = r_7$
f. $Z = \overline{r_7} \cdot \overline{r_6} \cdot \overline{r_5} \cdot \overline{r_4} \cdot \overline{r_3} \cdot \overline{r_2} \cdot \overline{r_1} \cdot \overline{r_0}$

14. (Long, but you need practice!). Perform each of the operations in the table below. Express the answer in binary, decimal, and hexadecimal, and give ALL flags: Z, N, V_{sub}, V_{add}, B and C using the logic equations from problem 14. The first row is done for you.

		Results								
Operation		Binary	Decimal	Hex	С	B	Vadd	V_{sub}	Ζ	Ν
a.	114 + 24	% 1000 1010	13810	\$8A	0	1	1	0	0	1
b.	\$37 + \$34	<mark>%0110 1011</mark>	<mark>107</mark>	<mark>\$6 B</mark>	<mark>0</mark>	0	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>
c.	\$37 + \$44	<mark>%0111 1011</mark>	<mark>123</mark>	<mark>\$7 B</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>
d.	\$13 + \$EC	<mark>%1111 1111</mark>	<mark>255 (-1)</mark>	<mark>\$F F</mark>	<mark>0</mark>	1	<mark>0</mark>	1	<mark>0</mark>	1
e.	\$13 + \$ED	<mark>%0000 0000</mark>	<mark>0</mark>	<mark>\$0 0</mark>	1	1	<mark>0</mark>	<mark>0</mark>	1	<mark>0</mark>
f.	\$13 + \$EE	<mark>%0000 0001</mark>	1	<mark>\$0 1</mark>	1	1	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>
g.	\$83 + \$96	<mark>%0001 1001</mark>	<mark>25</mark>	<mark>\$1 9</mark>	1	0	1	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>
h.	\$F0 + \$02	<mark>%1111 0010</mark>	<mark>242 (-14)</mark>	<mark>\$F 2</mark>	<mark>0</mark>	0	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	1
i.	\$24 - \$3B	<mark>%1110 1001</mark>	<mark>233 (-23)</mark>	<mark>\$E 9</mark>	<mark>0</mark>	1	<mark>1</mark>	<mark>0</mark>	<mark>0</mark>	1
j.	\$FD - \$07	<mark>%1111 0110</mark>	<mark>246 (-10)</mark>	<mark>\$F 6</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	1

Hint: the flags are <u>merely logic equations</u> that don't care *which* operation is being performed.

11. b) Algebraic solution

i) In class, we determined that $C = a_7 \cdot b_7 + a_7 \cdot \overline{r_7} + b_7 \cdot \overline{r_7}$ for 8-bit addition. We can replace *r* with *s* since they both represent the sum. If the numbers are only 1-bit wide, we would find $C = c_1 = a_0 \cdot b_0 + a_0 \cdot \overline{s_0} + b_0 \cdot \overline{s_0}$. Also, remember the sum bit is $s_0 = a_0 \oplus b_0 \oplus c_0$.

ii) By inspecting the Full Adder and Half Adder schematics, you can see the carry-out for the full adder is $c_1' = a_0 \cdot b_0 + c_0 \cdot (a_0 \oplus b_0)$.

iii) The goal below is to show that $c_1 = c_1'$ using algebraic manipulation.

Start with $c_1 = a_0 \cdot b_0 + a_0 \cdot \overline{s_0} + b_0 \cdot \overline{s_0}$, and manipulate it to show that $c_1 = c_1'$.

Notice $s_0 = a_0 \oplus b_0 \oplus c_0 \rightarrow \overline{s_0} = s_0 \oplus 1 \rightarrow a_0 \overline{s_0} = a_0 (a_0 \oplus b_0 \oplus c_0 \oplus 1)$.

If $a_0 = 0$ then $a_0 \overline{s_0} = 0$. In that case, the $a_0 \overline{s_0}$ term is unable to set $c_1 = 1$.

If $a_0 = 1$, then $a_0 \overline{s_0} = a_0(a_0 \oplus b_0 \oplus c_0 \oplus 1) = 1(1 \oplus b_0 \oplus c_0 \oplus 1) = b_0 \oplus c_0$.

Hence, we can simplify $a_0 \overline{s_0} = a_0 (b_0 \oplus c_0)$.

Similarly, the $b_0 \overline{s_0}$ term in c_1 can be simplified to $b_0 \overline{s_0} = b_0 (a_0 \oplus c_0)$.

Rewriting c1 becomes:

$$c_{1} = a_{0}b_{0} + a_{0}(b_{0}\oplus c_{0}) + b_{0}(a_{0}\oplus c_{0})$$

$$= a_{0}b_{0} + a_{0}(b_{0}\overline{c_{0}} + \overline{b_{0}}c_{0}) + b_{0}(a_{0}\overline{c_{0}} + \overline{a_{0}}c_{0})$$

$$= a_{0}b_{0} + a_{0}b_{0}\overline{c_{0}} + a_{0}\overline{b_{0}}c_{0} + a_{0}b_{0}\overline{c_{0}} + \overline{a_{0}}b_{0}c_{0}$$

$$= a_{0}b_{0} + a_{0}b_{0}\overline{c_{0}} + a_{0}b_{0}\overline{c_{0}} + c_{0}(a_{0}\overline{b_{0}} + \overline{a_{0}}b_{0})$$

$$= a_{0}b_{0}(1+\overline{c_{0}}+\overline{c_{0}}) + c_{0}(a_{0}\oplus b_{0})$$

$$= c_{1}'$$

Since $c_1 = c_1'$, the notes are correct.

You won't have to do something this hard for the quiz or exam.