Discrete Structures & Algorithms

Asymptotic complexity
and some sequences & summations

EECE 320 //UBC

Asymptotic complexity

Running time of an algorithm as a function of
input size nfor large n.

Expressed using only the highest-order term
in the expression for the exact running time.
— Instead of exact running time, say ©(n?).
Describes behavior of function in the limit.

Written using asymptotic notation.

Asymptotic notation

e 0,0, 2, 0,

 Defined for functions over the natural
numbers.
— Example: f(n) = 0(n?).
— Describes how f(n) grows in comparison

to n2.

 Define a set of functions; in practice used to

compare two function sizes.

e The notations describe different rate-of-
growth relations between the defining
function and the defined set of functions.

O-notation

For function g(n), we define ©(g(n)),
big-Theta of n, as the set:

CIC IO ER(DE
1 positive constants c,, c,, and n,
such that Vn = n,,

we have 0 < c,g(n) < f(n) < c,g(n)

}

Intuitively: Set of all functions
thathave the same rate of -
growth as g(n). f(n) =0©(g(n))

g(n) is an asymptotically tight bound for f(n).

O-notation

For function g(n), we define ©(g(n)),
big-Theta of n, as the set:

CIC IO ER(DE
1 positive constants c,, c,, and n,
such that Vn = n,,

we have 0 < c,g(n) < f(n) < c,g(n)

}

Technically, f(n) € 6(g(n)).
Older usage, f(n) = 6(g(n)). o
I’ll accept either... f(n) =0©(g(n))

f(n) and g(n) are nonnegative, for large n.

Example

0(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,, such
that Vn= n,, 0 <c,g(n) = f(n) < c,g(n)}

10n2 - 3n = O(n?)
What constants for n,, c,, and c, will work?

Make c, a little smaller than the leading
coefficient, and c, a little bigger.

To compare orders of growth, look at the
leading term.

Exercise: Prove that n?/2-3n= ©(n?)

Example

0(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,, such
that Vn= n,, 0 <c,g(n) = f(n) < c,g(n)}

e Is3ncO(n?)?
 How about 22" ©(2")?

O-notation

For function g(n), we define O(g(n)),
big-O of n, as the set:

f(n) = ©(g(n)) = f(n) = O(g(n)).
8(g(n)) < O(g(n)).

O(g(n)) = {f(n):
1 positive constants c and n, such
that Vn= n,,

we have 0 < f(n) <cg(n) }

Intuitively: Set of all functions
whose rate of growth is the same

as or lower than that of g(n). ny
f(n) = 0(g(n))

g(n) is an asymptotic upper bound for fn).

Examples

O(g(n)) = {f(n) : 3 positive constants c and n,, such
that Vn = n,, we have 0 < f(n) <cg(n) }

* Any linear function an+ bis in O(n?). How?
* Show that 3n3=0(n*) for appropriate c and n,.

Q -notation

For function g(n), we define Q(g(n)),
big-Omega of n, as the set:

f(n) = ©(g(n)) = f(n) = Q(g(n)).
©(g(n)) CQ(g(n)).

Q(g(n)) = {An):

1 positive constants cand n, such
thatvn= n,,

we have 0 =< cg(n) < f(n)}

Intuitively: Set of all functions
whose rate of growth is the same . "

as or higher than that of g(n). N
Y fn) = Q(gn)

g(n) is an asymptotic lower bound for f(n).

Example

Q(g(n)) = {f(n) : 3 positive constants c and n,, such
that Vn = n,, we have 0 < cg(n) < f(n)}

* vn =Q(lg n). Choose c and n,,.

Relations between 0, O, Q

n : n
no

f(n) = 0(g(n)) f(n) = Q(g(n))

no no

f(n)=0(g(n))

Relations between 0, Q, O

Theorem: For any two functions g(n) and f(n),
f(n) = ©(g(n)) iff
f(n) = O(g(n)) and f(n) = ©(g(n)).

* 0(g(n)) = 0(g(n)) N L(g(n))

e |In practice, asymptotically tight bounds are
obtained from asymptotic upper and lower
bounds.

Running times

“Running time is O(f(n))” = Worst case is O(f(n))

O(f(n)) bound on the worst-case running time =
O(f(n)) bound on the running time of every input.

O(f(n)) bound on the worst-case running time #
O(f(n)) bound on the running time of every input.

“Running time is Q(f(n))” = Best case is Q(f(n))

Can still say “Worst-case running time is Q(f(n))”

— Means worst-case running time is given by some
unspecified function g(n) € Q(f(n)).

Example

* [Insertion sort takes ©(n?) in the worst case, so
sorting (as a problem) is O(n?). Why?

 Any sort algorithm must look at each item, so
sorting is Q(n).

e |nfact, using (e.g.) merge sort, sorting is O(n Ilg
n) in the worst case.

— No comparison sort to do better in the worst case. [We
may not see a proof of this result in this course.]

Insertion sort

To insert 12, we need to
make room for it by moving

W first 36 and then 24.

Insertion sort

L
4

Insertion sort

&

Insertion sort

input array

5 2 4 6 3

At each iteration, the array is divided in two sub-arrays:

left sub-array right sub-array

sorted

3 MUY/

1

6

5

4

2

e
-
O

AN
c
O

=
-
Q
(/p)

k=

Insertion sort

Algorithm: INSERTION-SORT(A)
forj—2ton
do key — A[j]
Comment: Insert A[j] into the sorted sequence A[1 . .j-1]
i—j-1
while i > 0 and A[i] > key
do Ali + 1] « A[i]
i—=i-1
N ERI

a,

Asymptotic notation in equations

e Can use asymptotic notation in equations to
replace expressions containing lower-order
terms.

 For example,

4 +3n2+2n+1=4m+ 3n?>+ 0O(n)
=4 + 0(n?) = 0(n3). How do we interpret this?

* |n equations, O(f(n)) always stands for an

anonymous function g(n) € 6(f(n))

— In the example above, ©(n?) stands for
3n?+2n+1.

o-notation
For a given function g(n), the set little-o:

o(g(n)) ={f(n): V¢ >0, 3 ny >0 such that
V n = n,, we have 0 < f(n) < cg(n)}.

f(n) becomes insignificant relative to g(n) as
n approaches infinity:

lim [f(n) / g(n)] = 0.

n—oo

g(n) is an upper bound for f(n) that is not
asymptotically tight.

Observe the difference in this definition from
previous ones. Why?

w -notation
For a given function g(n), the set little-omega:

W(g(n)) = {f(n): V¢ >0, 3 ny >0 such that
V n = n,, we have 0 < cg(n) < f(n)}.

f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity:

lim [f(n) / g(n)] = =.

g(n) is a lower bound for f(n) that is not asymptotically
tight.

Limits
lim [f(n) / 9(n)] = 0 = f(n) € o(g(n))
lim [f(n) / 9(n)] < = = f(n) € O(g(n))

0 <lim [f(n) / g(n)] <~ = 1(n) € B(g(n))

0 <lim [f(n) / g(n)] = f(n) € (g(n))

lim [f(n) / g(n)] = = = (n) € n(g(n))

!\ig}o [f(n) / g(n)] undefined = can not say

Properties

* Transitivity
— f(n) =6(g(n)) & g(n) = B(h(n)) = f(n) = B(h(n))
f(n) = O(g(n)) & g(n) = O(h(n)) = f(n) = O(h(n))
f(n) = Q(g(n)) & g(n) = Q2(h(n)) = f(n) = Q(h(n))
f(n) = o (g(n)) & g(n) = o (h(n)) = f(n) = o (h(n))
f(n) = w(g(n)) & g(n) = w(h(n)) = f(n) = w(h(n))

* Reflexivity
= f(n) = 6(f(n))
— f(n) = O(f(n))
= f(n) = Q(f(n))

Properties

e Symmetry
f(n) = ©(g(n)) iff g(n) = O(f(n))

« Complementarity
f(n) = O(g(n)) iff g(n) = €2(f(n))
f(n) = o(g(n)) iff g(n) = w((f(n))

Common functions

Monotonicity

e f(n)is
— monotonically increasing if m < n = f(m) < f(n).
— monotonically decreasing if m = n = f(m) = f(n).
— strictly increasing if m < n = f(m) < f(n).
— strictly decreasing if m > n = f(m) > f(n).

Exponentials

 Useful (and elementary) Identities:
a1

a
(am)n — g™

n

a

aman — am+
 Exponentials and polynomials

b
n

lim— =0

n—>00 an

=n" =o(a")

30

Logarithms

x=log,ais the

exponent for a = b~

Natural log: In a =log_a
Binary log: |g a =log.a

lg2a =(lg a)?
lgilga=Ig(lg a)

q = blogba
log (ab)=log, a+log. b

log, a" =nlog,a

|
log, a = 282
log . b
log,(1/a)=-log, a
log, a = 1
S log b
log, c log, a

31

Logarithms and exponentials — Bases

If the base of a logarithm is changed from one

constant to another, the value is altered by a

constant factor.

- Example: log,, n* = log, n.

— Base of logarithm is not an issue in asymptotic
notation.

Exponentials with different bases differ by a

exponential factor (not a constant factor).

— Example: 2" = *3n,

Polylogarithms

e Fora=0,b>0,lim,_ (lgZ?n/n*)=0,
so Ig?n= o(n®), and n°= w(lg?n)
— Prove using L’Hospital’s rule repeatedly

e Ig(n')=06(nlig n)

— Prove using Stirling’s approximation (in the text) for Ig(n!).

Exercise
Express functions in A in asymptotic notation using functions in B.

A B
5n?>+100n 3n°+ 2

A € 0(n?), nPc 6(B)= A c0(B)

log,(n?) log,(n°)

log,a=log_.a/log.b; A=2Ignlig3, B =3lgn, AIB =2/(3ilg3)
nlg4 3Ig n
a'og b = plog a: B =319 '=pl9 3: A|B =n'943) > 0 a5 N—>00
|92n n1l2
lim(1g2n/n®)=0(herea=2and b=1/2) = A< o0(B)

n—o

Summations

Sequences

e Sequence: an ordered list of elements
— Like a set, but:

 Elements can be duplicated.
 Elements are ordered.

Sequences

e A sequence is afunction from a subset of Zto
aset S.
— Usually from the positive or non-negative integers.
— a, is the image of n.

 a is atermin the sequence.

e {a,} means the entire sequence.
— The same notation as sets!

Example sequences

e a,=3n
— The terms in the sequence are a,, a,, as, ...
— Thesequence{a,}is{3,6,9,12, ...}

e b, =2n
— The terms in the sequence are b,, b,, b, ...
— The sequence {b,}is {2,4,8,16, 32, ...}

 Note that these sequences are indexed from 1

— Not always, though! You need to pay attention to the start of
a sequence.

Summations

e Why do we need summation formulae?

For computing the running times of iterative
constructs (is a simple explanation).

Example: Maximum Subvector

Given an array A[1...n] of numeric values (can
be positive, zero, and negative) determine the
subvector A[i...J]] (1=1=<j =< n) whose sum of
elements is maximum over all subvectors.

Maximum Subvector

MaxSubvector (A, n)
maxsum <— 0;
fori<—1ton
doforj=iton
sum<0
fork<—itoj
do sum += A[K]
maxsum <— max(sum, maxsum)
return maxsum

* T(n) = }'i" 1

i=1]=I k=i

* NOTE: This is not a simplified solution. What /s the final answer?

Summations

How do you know this is true?

Use associativity to separate the bs from
the as.

Use distributivity to factor the cs.

Summations you should know

WhatisS=1+2+3+ ... +n?

S

2S = n+1 + n+1 +

You get n copies of (n+1). But we’ve over added by a
factor of 2. So just divide by 2.

Summations example/picture

Soi=1+2+3+..410

1

. n(n+1)
2

. 10x11

4 2

. 100x101

55

= 5050

We now have a square 10 (n) by 11 (n+1) with area 110 units

We need half of that (10x11)/2

Summations you should know

WhatisS=1+3+56+...+(2n-1)?

” N Sum of first n odds.
k=1 x /)

Summations you should know

WhatisS=1+3+56+ ... +(2n-

Summations you should know

: _ 2
WhatisS=1+r+re+ .. +r" Geometric Series

n

Erk=1+r+...+r”

Multiply by r

Subtract 2" from 1st

factor

Summations you should know

What about:

oo

Erk=1+r+...+r”+...

In-class exercise

* Find an expression for the following
summation.
— S=(1x2) + (2x3) + (3x4) + ... + n(n+1) = ?

— Hint: Consider (n+1)3-n3.

In-class exercise

Consider the binomial series expansion, and ponder
what happens when you differentiate both sides...

Important summations and techniques

 Constant Series: For integers aand b, a< b,

§1=b—a+l

* Linear Series (Arithmetic Series): For n=0,

Ei=1+2+---+n=n<n+1)
= 2

e Quadratic Series: Forn=0,

» n(n+1)2n+1)
) 6

n
21’2 =1°+2°+---4nm
p

50

Important summations and techniques

e Cubic Series: Forn=0,

if =1 +2° 4+ 41’ =n2(n+1)2
. 4
=1

e Geometric Series: Forreal x= 1,

n xn+l_1
X =l+x+x" ++x" =
=0 X—l
For |x| <1,

o0

;qu
=() l_x

51

Important summations and techniques

 Linear-Geometric Series: Forn=0,real c= 1,

n n+l n+2
. —(n+Dec™ +nc’ 7 +c
. 2
Elc’=c+2c +.o+nc” = (n+])

=1 (c- 1)2

 Harmonic Series: nth harmonic number, n€l*,

H, =1+1+1+---+l
n

= Z% = In(n) + O(1)

52

Important summations and techniques

 Telescoping Series:

n

Zak —d,,=4d,—d,
=1

* Differentiating Series: For |x| <A1,

o0

;ka] (1 —xx)2

53

Important summations and techniques

* Approximation by integrals:
— For monotonically increasing f(n)

[£(ds= Y 1= [0

— For monotonically decreasing f(n)

[F@ds= 1= [Feods
e How? " B "

54

Important summations and techniques

 nth harmonic number

n 1 n+1dx
=1%zf—=ln(n+l)

1 X

lefdx=lnn
4k J X

:>le11’11’1+1
= k

55

Wrap-up

What are the different asymptotic
bounds on functions?

How are the asymptotic bounds
related?

Asymptotic bounds and
algorithmic efficiency

Summations

— Basic summations (formulae)

— Tricks for certain series
* Telescoping
* Differentiation

You should never forget

the definitions for the O,
O, Q, o, w notations. They

help us analyze
algorithms.

