
Discrete Structures & Algorithms

Asymptotic complexity
and some sequences & summations

EECE 320 // UBC

2

Asymptotic complexity

•  Running time of an algorithm as a function of
input size n for large n.

•  Expressed using only the highest-order term
in the expression for the exact running time.
–  Instead of exact running time, say Θ(n2).

•  Describes behavior of function in the limit.

•  Written using asymptotic notation.

3

Asymptotic notation

•  Θ, O, Ω, o, ω
•  Defined for functions over the natural

numbers.
– Example: f(n) = Θ(n2).
– Describes how f(n) grows in comparison

to n2.
•  Define a set of functions; in practice used to

compare two function sizes.
•  The notations describe different rate-of-

growth relations between the defining
function and the defined set of functions.

4

Θ-notation

Θ(g(n)) = {f(n) :
∃ positive constants c1, c2, and n0,
such that ∀n ≥ n0,

we have 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

}

For function g(n), we define Θ(g(n)),
big-Theta of n, as the set:

g(n) is an asymptotically tight bound for f(n).

Intuitively: Set of all functions
thathave the same rate of
growth as g(n).

5

Θ-notation

Technically, f(n) ∈ Θ(g(n)).
Older usage, f(n) = Θ(g(n)).
I’ll accept either…

f(n) and g(n) are nonnegative, for large n.

Θ(g(n)) = {f(n) :
∃ positive constants c1, c2, and n0,
such that ∀n ≥ n0,

we have 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)

}

For function g(n), we define Θ(g(n)),
big-Theta of n, as the set:

6

Example

•  10n2 - 3n = Θ(n2)
•  What constants for n0, c1, and c2 will work?
•  Make c1 a little smaller than the leading

coefficient, and c2 a little bigger.
•  To compare orders of growth, look at the

leading term.
•  Exercise: Prove that n2/2-3n= Θ(n2)

Θ(g(n)) = {f(n) : ∃ positive constants c1, c2, and n0, such
that ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

7

Example

•  Is 3n3 ∈ Θ(n4)?

•  How about 22n∈ Θ(2n)?

Θ(g(n)) = {f(n) : ∃ positive constants c1, c2, and n0, such
that ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

8

O-notation

O(g(n)) = {f(n):

∃ positive constants c and n0, such
that ∀n ≥ n0,

we have 0 ≤ f(n) ≤ cg(n) }

For function g(n), we define O(g(n)),
big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n).

Intuitively: Set of all functions
whose rate of growth is the same
as or lower than that of g(n).

f(n) = Θ(g(n)) ⇒ f(n) = O(g(n)).
Θ(g(n)) ⊂ O(g(n)).

9

Examples

•  Any linear function an + b is in O(n2). How?

•  Show that 3n3=O(n4) for appropriate c and n0.

O(g(n)) = {f(n) : ∃ positive constants c and n0, such
that ∀n ≥ n0, we have 0 ≤ f(n) ≤ cg(n) }

10

Ω -notation

g(n) is an asymptotic lower bound for f(n).

Intuitively: Set of all functions
whose rate of growth is the same
as or higher than that of g(n).

f(n) = Θ(g(n)) ⇒ f(n) = Ω(g(n)).
Θ(g(n)) ⊂ Ω(g(n)).

Ω(g(n)) = {f(n) :
∃ positive constants c and n0, such
that ∀n ≥ n0,

we have 0 ≤ cg(n) ≤ f(n)}

For function g(n), we define Ω(g(n)),
big-Omega of n, as the set:

11

Example

•  √n = Ω(lg n). Choose c and n0.

Ω(g(n)) = {f(n) : ∃ positive constants c and n0, such
that ∀n ≥ n0, we have 0 ≤ cg(n) ≤ f(n)}

12

Relations between Θ, O, Ω

13

Relations between Θ, Ω, O

•  Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

•  In practice, asymptotically tight bounds are
obtained from asymptotic upper and lower
bounds.

Theorem: For any two functions g(n) and f(n),
 f(n) = Θ(g(n)) iff

 f(n) = O(g(n)) and f(n) = Ω(g(n)).

14

Running times

•  “Running time is O(f(n))” ⇒ Worst case is O(f(n))

•  O(f(n)) bound on the worst-case running time ⇒
O(f(n)) bound on the running time of every input.

•  Θ(f(n)) bound on the worst-case running time ⇒
Θ(f(n)) bound on the running time of every input.

•  “Running time is Ω(f(n))” ⇒ Best case is Ω(f(n))

•  Can still say “Worst-case running time is Ω(f(n))”

–  Means worst-case running time is given by some
unspecified function g(n) ∈ Ω(f(n)).

15

Example

•  Insertion sort takes Θ(n2) in the worst case, so
sorting (as a problem) is O(n2). Why?

•  Any sort algorithm must look at each item, so
sorting is Ω(n).

•  In fact, using (e.g.) merge sort, sorting is Θ(n lg
n) in the worst case.

–  No comparison sort to do better in the worst case. [We
may not see a proof of this result in this course.]

16

To insert 12, we need to
make room for it by moving
first 36 and then 24.

6 10 24

Insertion sort

17

6 10 24

Insertion sort

18

6 10 24

Insertion sort

19

5 2 4 6 1 3

input array

left sub-array right sub-array

At each iteration, the array is divided in two sub-arrays:

sorted unsorted

Insertion sort

20

Insertion Sort

21

Algorithm: INSERTION-SORT(A)
 for j ← 2 to n

 do key ← A[j]

 Comment: Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

a8 a7 a6 a5 a4 a3 a2 a1

1 2 3 4 5 6 7 8

key

Insertion sort

22

Asymptotic notation in equations

•  Can use asymptotic notation in equations to
replace expressions containing lower-order
terms.

•  For example,

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Θ(n)
= 4n3 + Θ(n2) = Θ(n3). How do we interpret this?

•  In equations, Θ(f(n)) always stands for an
anonymous function g(n) ∈ Θ(f(n))
–  In the example above, Θ(n2) stands for

3n2 + 2n + 1.

23

o-notation

 f(n) becomes insignificant relative to g(n) as
n approaches infinity:

 lim [f(n) / g(n)] = 0.

n→∞

g(n) is an upper bound for f(n) that is not
asymptotically tight.

Observe the difference in this definition from
previous ones. Why?

o(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that
 ∀ n ≥ n0, we have 0 ≤ f(n) < cg(n)}.

For a given function g(n), the set little-o:

24

ω(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that
 ∀ n ≥ n0, we have 0 ≤ cg(n) < f(n)}.

ω -notation

f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity:

 lim [f(n) / g(n)] = ∞.

n→∞

g(n) is a lower bound for f(n) that is not asymptotically
tight.

For a given function g(n), the set little-omega:

25

Limits

•  lim [f(n) / g(n)] = 0 ⇒ f(n) ∈ ο(g(n))
 n→∞

•  lim [f(n) / g(n)] < ∞ ⇒ f(n) ∈ Ο(g(n))
 n→∞

•  0 < lim [f(n) / g(n)] < ∞ ⇒ f(n) ∈ Θ(g(n))
 n→∞

•  0 < lim [f(n) / g(n)] ⇒ f(n) ∈ Ω(g(n))
 n→∞

•  lim [f(n) / g(n)] = ∞ ⇒ f(n) ∈ ω(g(n))
 n→∞

•  lim [f(n) / g(n)] undefined ⇒ can not say
 n→∞

26

Properties

•  Transitivity
–  f(n) = Θ(g(n)) & g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n))
–  f(n) = O(g(n)) & g(n) = O(h(n)) ⇒ f(n) = O(h(n))
–  f(n) = Ω(g(n)) & g(n) = Ω(h(n)) ⇒ f(n) = Ω(h(n))
–  f(n) = o (g(n)) & g(n) = o (h(n)) ⇒ f(n) = o (h(n))
–  f(n) = ω(g(n)) & g(n) = ω(h(n)) ⇒ f(n) = ω(h(n))

•  Reflexivity
–  f(n) = Θ(f(n))
–  f(n) = O(f(n))
–  f(n) = Ω(f(n))

27

Properties

•  Symmetry

 f(n) = Θ(g(n)) iff g(n) = Θ(f(n))

•  Complementarity
 f(n) = O(g(n)) iff g(n) = Ω(f(n))
 f(n) = o(g(n)) iff g(n) = ω((f(n))

Common functions

29

Monotonicity

•  f(n) is
–  monotonically increasing if m ≤ n ⇒ f(m) ≤ f(n).
–  monotonically decreasing if m ≥ n ⇒ f(m) ≥ f(n).

–  strictly increasing if m < n ⇒ f(m) < f(n).
–  strictly decreasing if m > n ⇒ f(m) > f(n).

30

Exponentials

•  Useful (and elementary) Identities:

•  Exponentials and polynomials

nmnm

mnnm

aaa
aa

a
a

+

−

=

=

=

)(

11

)(

0lim

nb

n

b

n

aon
a
n

=⇒

=
∞→

31

Logarithms

x = logba is the
exponent for a = bx.

Natural log: ln a = logea
Binary log: lg a = log2a

lg2a = (lg a)2

lg lg a = lg (lg a)

ac
a

b

bb

c

c
b

b
n

b

ccc

a

bb

b

ca

b
a

aa
b
aa

ana
baab

ba

loglog

log

log
1log

log)/1(log
log
loglog

loglog

loglog)(log

=

=

−=

=

=

+=

=

32

Logarithms and exponentials – Bases

•  If the base of a logarithm is changed from one
constant to another, the value is altered by a
constant factor.
–  Example: log10 n * log210 = log2 n.
–  Base of logarithm is not an issue in asymptotic

notation.

•  Exponentials with different bases differ by a
exponential factor (not a constant factor).
–  Example: 2n = (2/3)n*3n.

33

Polylogarithms

•  For a ≥ 0, b > 0, lim n→∞ (lga n / nb) = 0,
so lga n = o(nb), and nb = ω(lga n)
–  Prove using L’Hospital’s rule repeatedly

•  lg(n!) = Θ(n lg n)
–  Prove using Stirling’s approximation (in the text) for lg(n!).

34

Exercise
Express functions in A in asymptotic notation using functions in B.

 A B

5n2 + 100n 3n2 + 2

 A ∈ Θ(n2), n2 ∈ Θ(B) ⇒ A ∈ Θ(B)

log3(n2) log2(n3)

logba = logca / logcb; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3)

 nlg4 3lg n

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3) → ∞ as n→∞

lg2n n1/2

lim (lga n / nb) = 0 (here a = 2 and b = 1/2) ⇒ A ∈ ο (B)
 n→∞

A ∈ Θ(B)

A ∈ Θ(B)

A ∈ ω(B)

A ∈ ο (B)

Summations

36

Sequences

•  Sequence: an ordered list of elements
–  Like a set, but:

•  Elements can be duplicated.

•  Elements are ordered.

37

Sequences

•  A sequence is a function from a subset of Z to
a set S.
–  Usually from the positive or non-negative integers.

–  an is the image of n.

•  an is a term in the sequence.
•  {an} means the entire sequence.

–  The same notation as sets!

38

Example sequences

•  an = 3n
–  The terms in the sequence are a1, a2, a3, …

–  The sequence {an} is { 3, 6, 9, 12, … }

•  bn = 2n

–  The terms in the sequence are b1, b2, b3, …
–  The sequence {bn} is { 2, 4, 8, 16, 32, … }

•  Note that these sequences are indexed from 1
–  Not always, though! You need to pay attention to the start of

a sequence.

39

Summations

•  Why do we need summation formulae?
For computing the running times of iterative

constructs (is a simple explanation).

Example: Maximum Subvector

Given an array A[1…n] of numeric values (can
be positive, zero, and negative) determine the
subvector A[i…j] (1≤ i ≤ j ≤ n) whose sum of
elements is maximum over all subvectors.

1 -2 2 2

40

Maximum Subvector

MaxSubvector(A, n)
 maxsum ← 0;
 for i ← 1 to n
 do for j = i to n
 sum ← 0
 for k ← i to j
 do sum += A[k]
 maxsum ← max(sum, maxsum)
 return maxsum

 n n j

• T(n) = ∑ ∑ ∑ 1
 i=1 j=i k=i

•  NOTE: This is not a simplified solution. What is the final answer?

41

Summations

How do you know this is true?

€

cai + bi()
i=1

k

∑ = c ai
i=1

k

∑ + bi
i=1

k

∑

Use associativity to separate the bs from
the as.

Use distributivity to factor the cs.

42

Summations you should know

What is S = 1 + 2 + 3 + … + n?

You get n copies of (n+1). But we’ve over added by a
factor of 2. So just divide by 2.

S = 1 + 2 + … + n

S = n + n-1 + … + 1

2S = n+1 + n+1 + … + n+1

Write the sum.

Write it again.

Add together.

€

k
k=1

n

∑ =
n(n + 1)
2

43

Summations example/picture

1032110

1
++++=∑ =

…
i
i

We now have a square 10 (n) by 11 (n+1) with area 110 units

We need half of that (10x11)/2

5050
2
101100

55
2
1110
2
)1(

100

1

10

1

1

=
×

=

=
×

=

+
=

∑

∑

∑

=

=

=

i

i

n

i

i

i

nni

44

Summations you should know

What is S = 1 + 3 + 5 + … + (2n - 1)?

Sum of first n odds.

€

(2k −1)
k=1

n

∑ = 2 k
k=1

n

∑ − 1
k=1

n

∑

€

= 2 n(n + 1)
2

⎛

⎝
⎜

⎞

⎠
⎟ − n

€

= n2

45

Summations you should know

What is S = 1 + 3 + 5 + … + (2n - 1)? Sum of first n odds.

€

= n2

46

Summations you should know

What is S = 1 + r + r2 + … + rn Geometric Series

€

rk
k= 0

n

∑ = 1+ r + … + rn

€

r rk
k= 0

n

∑ = r + r2 + … + rn+1

Multiply by r

Subtract 2nd from 1st

€

rk
k= 0

n

∑ − r rk
k= 0

n

∑ = 1− rn+1

factor

€

(1− r) rk
k= 0

n

∑ = 1− rn+1
divide

€

rk
k= 0

n

∑ =
1− rn+1

(1− r) DONE!

47

Summations you should know

What about:

€

rk
k= 0

∞

∑ = 1+ r + … + rn + …

€

=
n→∞
lim1− rn+1

(1− r)

If r ≥ 1 this
blows up.

If r < 1 we can say something.

€

rk
k= 0

∞

∑ =
n→∞
lim rk

k= 0

n

∑

€

=
1

(1− r)

48

In-class exercise

•  Find an expression for the following
summation.
–  S = (1x2) + (2x3) + (3x4) + … + n(n+1) = ?

–  Hint: Consider (n+1)3-n3.

49

In-class exercise

Consider the binomial series expansion, and ponder
what happens when you differentiate both sides…

50

Important summations and techniques

•  Constant Series: For integers a and b, a ≤ b,

•  Linear Series (Arithmetic Series): For n ≥ 0,

•  Quadratic Series: For n ≥ 0,

∑
=

+−=
b

ai
ab 11

2
)1(21

1

+
=+++=∑

=

nnni
n

i

∑
=

++
=+++=

n

i

nnnni
1

2222

6
)12)(1(21

51

Important summations and techniques

•  Cubic Series: For n ≥ 0,

•  Geometric Series: For real x ≠ 1,

 For |x| < 1,

∑
=

+
=+++=

n

i

nnni
1

22
3333

4
)1(21

∑
=

+

−
−

=++++=
n

k

n
nk

x
xxxxx

0

1
2

1
11

∑
∞

= −
=

0 1
1

k

k

x
x

52

Important summations and techniques

•  Linear-Geometric Series: For n ≥ 0, real c ≠ 1,

•  Harmonic Series: nth harmonic number, n∈I+,

∑
=

++

−

+++−
=+++=

n

i

nn
ni

c
cnccnncccic

1
2

21
2

)1(
)1(2

n
Hn

1
3
1

2
11 ++++=

∑
=

+==
n

k
On

k1
)1()ln(1

53

Important summations and techniques

•  Telescoping Series:

•  Differentiating Series: For |x| < 1,

∑
=

− −=−
n

k
nkk aaaa

1
01

()∑
∞

= −
=

0
21k

k

x
xkx

54

Important summations and techniques

•  Approximation by integrals:
–  For monotonically increasing f(n)

–  For monotonically decreasing f(n)

•  How?

∫ ∑ ∫
− =

+

≤≤
n

m

n

mk

n

m

dxxfkfdxxf
1

1

)()()(

∫ ∑ ∫
+

= −

≤≤
1

1

)()()(
n

m

n

mk

n

m

dxxfkfdxxf

55

Important summations and techniques

•  nth harmonic number

∑ ∫
=

+

+=≥
n

k

n

n
x
dx

k1

1

1

)1ln(1

∑ ∫
=

=≤
n

k

n

n
x
dx

k2 1

ln1

∑
=

+≤⇒
n

k
n

k1
1ln1

56

Wrap-up

•  What are the different asymptotic
bounds on functions?

•  How are the asymptotic bounds
related?

•  Asymptotic bounds and
algorithmic efficiency

•  Summations
–  Basic summations (formulae)
–  Tricks for certain series

•  Telescoping
•  Differentiation
•  …

57

You should never forget
the definitions for the Θ,
O, Ω, o, ω notations. They

help us analyze
algorithms.	

