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Asymptotic complexity 

•  Running time of an algorithm as a function of 
input size n for large n. 

•  Expressed using only the highest-order term 
in the expression for the exact running time. 
–  Instead of exact running time, say Θ(n2). 

•  Describes behavior of function in the limit. 

•  Written using asymptotic notation. 
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Asymptotic notation 

•   Θ, O, Ω, o, ω 
•  Defined for functions over the natural 

numbers. 
– Example: f(n)  =  Θ(n2). 
– Describes how f(n) grows in comparison 

to n2. 
•  Define a set of functions; in practice used to 

compare two function sizes. 
•  The notations describe different rate-of-

growth relations between the defining 
function and the defined set of functions. 
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Θ-notation 

Θ(g(n)) = {f(n) :  
∃ positive constants c1, c2, and n0, 
such that ∀n ≥  n0, 

we have 0 ≤ c1g(n) ≤  f(n) ≤ c2g(n) 

} 

For function g(n), we define Θ(g(n)), 
big-Theta of  n, as the set: 

g(n) is an asymptotically tight bound for f(n). 

Intuitively: Set of  all functions 
thathave the same rate of  
growth as g(n). 
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Θ-notation 

Technically, f(n) ∈ Θ(g(n)). 
Older usage,  f(n) = Θ(g(n)). 
I’ll accept either…  

f(n) and g(n) are nonnegative, for large n.  

Θ(g(n)) = {f(n) :  
∃ positive constants c1, c2, and n0, 
such that ∀n ≥  n0, 

we have 0 ≤ c1g(n) ≤  f(n) ≤ c2g(n) 

} 

For function g(n), we define Θ(g(n)), 
big-Theta of  n, as the set: 
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Example 

•  10n2 - 3n = Θ(n2) 
•  What constants for n0, c1, and c2 will work? 
•  Make c1 a little smaller than the leading 

coefficient, and c2 a little bigger. 
•  To compare orders of growth, look at the 

leading term. 
•  Exercise: Prove that n2/2-3n= Θ(n2) 

Θ(g(n)) = {f(n) : ∃ positive constants c1, c2, and n0, such 
that ∀n ≥  n0, 0 ≤ c1g(n) ≤  f(n) ≤ c2g(n)} 
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Example 

•  Is 3n3 ∈ Θ(n4)? 

•  How about 22n∈ Θ(2n)? 

Θ(g(n)) = {f(n) : ∃ positive constants c1, c2, and n0, such 
that ∀n ≥  n0, 0 ≤ c1g(n) ≤  f(n) ≤ c2g(n)} 
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O-notation 

O(g(n)) = {f(n):  

∃ positive constants c and n0, such 
that ∀n ≥  n0, 

we have 0 ≤  f(n) ≤ cg(n) } 

For function g(n), we define O(g(n)), 
big-O of  n, as the set: 

g(n) is an asymptotic upper bound for f(n). 

Intuitively: Set of  all functions 
whose rate of  growth is the same 
as or lower than that of  g(n). 

f(n) = Θ(g(n)) ⇒ f(n) = O(g(n)). 
Θ(g(n))  ⊂ O(g(n)). 
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Examples 

•  Any linear function an + b is in O(n2). How? 

•  Show that 3n3=O(n4) for appropriate c and n0. 

O(g(n)) = {f(n) : ∃ positive constants c and n0, such 
that ∀n ≥  n0, we have 0 ≤  f(n) ≤ cg(n) } 
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Ω -notation 

g(n) is an asymptotic lower bound for f(n). 

Intuitively: Set of  all functions 
whose rate of  growth is the same 
as or higher than that of  g(n). 

f(n) = Θ(g(n)) ⇒ f(n) = Ω(g(n)). 
Θ(g(n))  ⊂ Ω(g(n)). 

Ω(g(n)) = {f(n) :  
∃ positive constants c and n0, such 
that ∀n ≥  n0, 

we have 0 ≤ cg(n) ≤ f(n)} 

For function g(n), we define Ω(g(n)), 
big-Omega of  n, as the set: 
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Example 

•  √n = Ω(lg n). Choose c and n0. 

Ω(g(n)) = {f(n) : ∃ positive constants c and n0, such 
that ∀n ≥ n0, we have 0 ≤ cg(n) ≤ f(n)} 
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Relations between Θ, O, Ω 
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Relations between Θ, Ω, O 

•  Θ(g(n)) = O(g(n)) ∩ Ω(g(n)) 

•  In practice, asymptotically tight bounds are 
obtained from asymptotic upper and lower 
bounds. 

Theorem:  For any two functions g(n) and f(n),  
           f(n) = Θ(g(n)) iff   

 f(n) = O(g(n)) and f(n) = Ω(g(n)). 



14 

Running times 

•  “Running time is O(f(n))” ⇒ Worst case is O(f(n)) 

•  O(f(n)) bound on the worst-case running time ⇒ 
O(f(n)) bound on the running time of every input. 

•  Θ(f(n)) bound on the worst-case running time ⇒ 
Θ(f(n)) bound on the running time of every input. 

•  “Running time is Ω(f(n))” ⇒ Best case is Ω(f(n))  

•  Can still say “Worst-case running time is Ω(f(n))” 

–  Means worst-case running time is given by some 
unspecified function g(n) ∈ Ω(f(n)). 
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Example 

•  Insertion sort takes Θ(n2) in the worst case, so 
sorting (as a problem) is O(n2).  Why? 

•  Any sort algorithm must look at each item, so 
sorting is Ω(n). 

•  In fact, using (e.g.) merge sort, sorting is Θ(n lg 
n) in the worst case. 

–  No comparison sort to do better in the worst case. [We 
may not see a proof of this result in this course.] 
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To insert 12, we need to 
make room for it by moving 
first 36 and then 24. 

6 10 24 

Insertion sort 
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6 10 24 

Insertion sort 
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6 10 24 

Insertion sort 



19 

5      2      4      6      1      3 

input array  

left sub-array right sub-array 

At each iteration, the array is divided in two sub-arrays: 

sorted unsorted 

Insertion sort 
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Insertion Sort 
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Algorithm: INSERTION-SORT(A) 
 for j ← 2 to n 

  do key ← A[ j ] 

        Comment: Insert A[ j ] into the sorted sequence A[1 . . j -1] 

       i ← j - 1 

       while i > 0 and A[i] > key 

   do A[i + 1] ← A[i] 

         i ← i – 1 

       A[i + 1] ← key 

a8 a7 a6 a5 a4 a3 a2 a1 

1 2 3 4 5 6 7 8

key 

Insertion sort 
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Asymptotic notation in equations 

•  Can use asymptotic notation in equations to 
replace expressions containing lower-order 
terms. 

•  For example, 

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Θ(n)  
= 4n3 + Θ(n2) = Θ(n3). How do we interpret this? 

•  In equations, Θ(f(n)) always stands for an 
anonymous function g(n) ∈ Θ(f(n)) 
–  In the example above, Θ(n2) stands for  

3n2 + 2n + 1. 
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o-notation 

 f(n) becomes insignificant relative to g(n) as 
n approaches infinity: 

     lim [f(n) / g(n)] = 0. 
                     

n→∞
  

g(n) is an upper bound for f(n) that is not 
asymptotically tight. 

Observe the difference in this definition from 
previous ones. Why? 

o(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that  
  ∀ n ≥  n0, we have 0 ≤  f(n) < cg(n)}. 

For a given function g(n), the set little-o: 
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ω(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that  
  ∀ n ≥  n0, we have 0 ≤ cg(n) <  f(n)}. 

ω -notation 

f(n) becomes arbitrarily large  relative to g(n) as n 
approaches infinity: 

    lim [f(n) / g(n)] = ∞. 
                          

n→∞
  

g(n) is a lower bound for f(n) that is not asymptotically 
tight. 

For a given function g(n), the set little-omega: 
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Limits 

•  lim [f(n) / g(n)] = 0 ⇒ f(n) ∈ ο(g(n)) 
     n→∞ 

•  lim [f(n) / g(n)] < ∞ ⇒ f(n) ∈ Ο(g(n)) 
     n→∞ 

•  0 < lim [f(n) / g(n)] < ∞ ⇒ f(n) ∈ Θ(g(n)) 
             n→∞ 

•  0 < lim [f(n) / g(n)] ⇒ f(n) ∈ Ω(g(n)) 
             n→∞ 

•  lim [f(n) / g(n)] = ∞ ⇒ f(n) ∈ ω(g(n)) 
     n→∞ 

•  lim [f(n) / g(n)] undefined ⇒ can not say 
     n→∞ 
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Properties 

•  Transitivity 
–  f(n) = Θ(g(n)) & g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n)) 
–  f(n) = O(g(n)) & g(n) = O(h(n)) ⇒ f(n) = O(h(n)) 
–  f(n) = Ω(g(n)) & g(n) = Ω(h(n)) ⇒ f(n) = Ω(h(n)) 
–  f(n) = o (g(n)) & g(n) = o (h(n)) ⇒ f(n) = o (h(n)) 
–  f(n) = ω(g(n)) & g(n) = ω(h(n)) ⇒ f(n) = ω(h(n))  

•  Reflexivity 
–  f(n) = Θ(f(n)) 
–  f(n) = O(f(n)) 
–  f(n) = Ω(f(n)) 
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Properties 

•  Symmetry 

 f(n) = Θ(g(n)) iff g(n) = Θ(f(n))  

•  Complementarity 
     f(n) = O(g(n)) iff g(n) = Ω(f(n))  
     f(n) =  o(g(n)) iff g(n) = ω((f(n))  



Common functions 
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Monotonicity 

•  f(n) is  
–  monotonically increasing if m ≤ n ⇒ f(m) ≤ f(n). 
–  monotonically decreasing if m ≥ n ⇒ f(m) ≥ f(n). 

–  strictly increasing if m < n ⇒ f(m) < f(n). 
–  strictly decreasing if m > n ⇒ f(m) > f(n). 
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Exponentials 

•  Useful (and elementary) Identities: 

•  Exponentials and polynomials 
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Logarithms  

x = logba is the  
exponent for a = bx. 

Natural log: ln a = logea 
Binary log: lg a = log2a 

lg2a = (lg a)2 

lg lg a  =  lg (lg a) 

ac
a

b

bb

c

c
b

b
n

b

ccc

a

bb

b

ca

b
a

aa
b
aa

ana
baab

ba

loglog

log

log
1log

log)/1(log
log
loglog

loglog

loglog)(log

=

=

−=

=

=

+=

=



32 

Logarithms and exponentials – Bases  

•  If the base of a logarithm is changed from one 
constant to another, the value is altered by a 
constant factor. 
–  Example: log10 n * log210 = log2 n. 
–  Base of logarithm is not an issue in asymptotic 

notation. 

•  Exponentials with different bases differ by a 
exponential factor (not a constant factor). 
–  Example: 2n = (2/3)n*3n. 
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Polylogarithms 

•  For a ≥ 0, b > 0, lim n→∞ ( lga n / nb ) = 0,  
so lga n = o(nb), and  nb = ω(lga n ) 
–  Prove using L’Hospital’s rule repeatedly 

•  lg(n!) = Θ(n lg n) 
–  Prove using Stirling’s approximation (in the text) for lg(n!). 
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Exercise 
Express functions in A in asymptotic notation using functions in B. 

 A                                         B                                     

5n2 + 100n               3n2 + 2 

 A ∈ Θ(n2), n2 ∈ Θ(B) ⇒ A ∈ Θ(B) 

log3(n2)            log2(n3) 

logba = logca / logcb; A = 2lgn / lg3, B  = 3lgn, A/B =2/(3lg3) 

 nlg4                   3lg n 

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3) → ∞ as n→∞ 

lg2n                               n1/2 

lim ( lga n / nb ) = 0 (here a = 2 and b = 1/2) ⇒ A ∈ ο (B) 
 n→∞ 

A ∈ Θ(B) 

A ∈ Θ(B) 

A ∈ ω(B) 

A ∈ ο (B) 



Summations 
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Sequences 

•  Sequence: an ordered list of elements 
–  Like a set, but: 

•  Elements can be duplicated. 

•  Elements are ordered. 
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Sequences 

•  A sequence is a function from a subset of Z to 
a set S. 
–  Usually from the positive or non-negative integers. 

–  an is the image of n. 

•  an is a term in the sequence. 
•  {an} means the entire sequence. 

–  The same notation as sets! 
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Example sequences 

•  an = 3n 
–  The terms in the sequence are a1, a2, a3, … 

–  The sequence {an} is { 3, 6, 9, 12, … } 

•  bn = 2n 

–  The terms in the sequence are b1, b2, b3, … 
–  The sequence {bn} is  { 2, 4, 8, 16, 32, … } 

•  Note that these sequences are indexed from 1 
–  Not always, though! You need to pay attention to the start of 

a sequence. 
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Summations 

•  Why do we need summation formulae?  
For computing the running times of iterative 

constructs (is a simple explanation).  

Example:  Maximum Subvector 

Given an array A[1…n] of numeric values (can 
be positive, zero, and negative) determine the 
subvector A[i…j] (1≤ i ≤ j ≤ n) whose sum of 
elements is maximum over all subvectors. 

1 -2 2 2 
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Maximum Subvector 

MaxSubvector(A, n)  
 maxsum ← 0; 
 for i ← 1 to n  
     do for j = i to n 
        sum ← 0 
        for k ← i to j   
   do sum += A[k] 
        maxsum ← max(sum, maxsum) 
 return maxsum 

                n     n      j 

• T(n) =   ∑ ∑ ∑ 1 
               i=1   j=i  k=i 

•  NOTE:  This is not a simplified solution.  What is the final answer? 
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Summations 

How do you know this is true? 

€ 

cai + bi( )
i=1

k

∑ = c ai
i=1

k

∑ + bi
i=1

k

∑

Use associativity to separate the bs from 
the as. 

Use distributivity to factor the cs. 
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Summations you should know 

What is S = 1 + 2 + 3 + … + n? 

You get n copies of  (n+1).  But we’ve over added by a 
factor of  2.  So just divide by 2. 

S = 1 + 2 + … + n 

S = n + n-1 + … + 1 

2S = n+1 + n+1 + … + n+1 

Write the sum. 

Write it again. 

Add together. 

€ 

k
k=1

n

∑ =
n(n + 1)
2
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Summations example/picture 
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Summations you should know 

What is S = 1 + 3 + 5 + … + (2n - 1)? 

Sum of  first n odds. 

€ 

(2k −1)
k=1

n

∑ = 2 k
k=1

n

∑ − 1
k=1

n

∑

€ 

= 2 n(n + 1)
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − n

€ 

= n2
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Summations you should know 

What is S = 1 + 3 + 5 + … + (2n - 1)? Sum of  first n odds. 

€ 

= n2
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Summations you should know 

What is S = 1 + r + r2 + … + rn Geometric Series 

  

€ 

rk
k= 0

n

∑ = 1+ r + … + rn

  

€ 

r rk
k= 0

n

∑ = r + r2 + … + rn+1

Multiply by r 

Subtract 2nd from 1st 

€ 
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k= 0

n

∑ − r rk
k= 0

n

∑ = 1− rn+1

factor 

€ 

(1− r) rk
k= 0

n

∑ = 1− rn+1
divide 

€ 

rk
k= 0

n

∑ =
1− rn+1

(1− r) DONE! 
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Summations you should know 

What about: 

  

€ 

rk
k= 0

∞

∑ = 1+ r + … + rn + …

€ 

=
n→∞
lim1− rn+1

(1− r)

If  r ≥ 1 this 
blows up. 

If  r < 1 we can say something. 

€ 
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∞
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n→∞
lim rk

k= 0

n

∑

€ 

=
1

(1− r)
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In-class exercise 

•  Find an expression for the following 
summation. 
–  S = (1x2) + (2x3) + (3x4) + … + n(n+1) = ? 

–  Hint: Consider (n+1)3-n3. 
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In-class exercise 

Consider the binomial series expansion, and ponder 
what happens when you differentiate both sides… 
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Important summations and techniques 

•  Constant Series: For integers a and b, a ≤ b, 

•  Linear Series (Arithmetic Series):  For n ≥ 0, 

•  Quadratic Series:  For n ≥ 0, 
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Important summations and techniques 

•  Cubic Series:  For n ≥ 0, 

•  Geometric Series:  For real x ≠ 1, 

       For |x| < 1, 
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Important summations and techniques 

•  Linear-Geometric Series:  For n ≥ 0, real c ≠ 1, 

•  Harmonic Series: nth harmonic number, n∈I+, 
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Important summations and techniques 

•  Telescoping Series: 

•  Differentiating Series:  For |x| < 1, 
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Important summations and techniques 

•  Approximation by integrals: 
–  For monotonically increasing f(n) 

–  For monotonically decreasing f(n) 

•  How? 
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Important summations and techniques 

•  nth harmonic number 
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Wrap-up 

•  What are the different asymptotic 
bounds on functions? 

•  How are the asymptotic bounds 
related? 

•  Asymptotic bounds and 
algorithmic efficiency 

•  Summations 
–  Basic summations (formulae) 
–  Tricks for certain series 

•  Telescoping 
•  Differentiation 
•  … 
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You should never forget 
the definitions for the Θ, 
O, Ω, o, ω notations. They 

help us analyze 
algorithms.	



