
Some notes on counting with polynomials and
combinatorial arguments

1 Counting with polynomials
Polynomials and their products provide very general – and powerful – methods to
count a variety of sets. In particular, we will examine how to count the number
of non-negative integer solutions to the equation

x1 + x2 + · · ·+ xn = m,

subject to a few constraints.
We will start by assuming only that each xi ≥ 0 and m ≥ 0. This type of

equation then represents that number of ways to divide up m bars of gold among
n pirates with the possibility that some pirates may receive nothing at all. It is
all identical to questions involving n identical bins and m identical balls: In how
many ways can we put balls into bins?

An approach to solving this type of problem is to proceed as follows. Let us
suppose we are dividing m bars of gold among n pirates. We may assume that
the bars of gold are lined up, and we simply throw some dividers into the line to
partition the bars of gold into n partitions.

Consider the specific example of m = 6 and n = 3. We could line up the bars
of gold as GGGGGG. If | represents a partition, then one possible division of the
gold among the three pirates is G|GGGG|GG, which means that the first pirate
gets 1 bar of gold, the second pirate gets 4 bars of gold and the third pirate gets
2 bars of gold. A partition that looks like G||GGGGG would simply mean that
the second pirate gets nothing at all. Notice that every possible partitioning of
the gold can be represented by a string of length 8 made up of 6 Gs and 2 |s.
We know that there are

(8
2

)
= 28 such strings – we count by merely selecting

the positions for the two dividers – and that is the number of ways to partition
6 bars of gold among 3 pirates.

In general, for m bars of gold and n pirates, there are
(n+m−1

n−1

)
possible

allocations of gold. And in fact, that is the number of integer solutions to the
equation x1 + · · ·+ xn = m such that each xi ≥ 0 and m≥ 0.

We shall, however, obtain the same result in a different fashion to convey the
use of polynomials.
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We want to find the number of integer solutions to x1 + · · ·+ xn = m such
that each xi ≥ 0. Let us consider the polynomial (x0 + x1 + x2 + . . .)n. (Note:
The x in this polynomial is a dummy variable that is not to be confused with xi.)
Now, we will let (x0 + x1 + . . .) represent the value of xi. An easy way to reason
about this is an OR operation. We are saying that xi is 0 or 1 or 2 or . . . . Now,

(x0 + x1 + . . .)n =
∞

∑
i=0

ckxk,

if we expanded out. We let ck denote the coefficient of xk on the right side of
the above equality. Notice that the coefficient of xk represents the number of
ways to achieve a sum of k using n variables. For instance, the x1 + · · ·+ xn = 0
is possible only when each xi = 0, which is in exactly one way. Therefore c0 = 1.
We are therefore interested in the coefficient of xm in the expansion.

How do we determine the coefficient of xm? We can make use of the fact
that x0 + x1 + . . . is an infinite geometric progression, and we let its sum be

1
1−x = (1− x)−1. (This is under the assumption that 0 < x < 1, which we are
free to make because x is a dummy variable.)

How do we expand (1− x)−n (because that is the function of interest)?
We use Taylor’s Series Expansion. For any function f (x), the function can be
expanded about a point a as follows:

f (x) = f (a)+
f ′(a)
1!

(x−a)+
f ′′(a)

2!
(x−a)2 + . . . .

For f (x) = (1− x)−n and expanding about a = 0, we get

(1−x)−n = 1+(n)
(1−0)−(n+1)

1!
x+n(n+1)

(1−0)−(n+2)

2!
x2+· · ·=

∞

∑
k=0

(
n+ k−1

k

)
xk.

We are really interested in the coefficient of xm in the expansion, and we now
observe that the coefficient of xm is

(n+m−1
m

)
=

(n+m−1
n−1

)
.

The earlier method for obtaining this result may have appeared easier. So,
why this method? This is useful when we want to count the number of solutions
for

x1 + · · ·+ xn = m

when 0≤ xi ≤ r. In this case, the approach used for dividing the gold bars does
not work because we are not able to ensure, in that method, that there is a
minimum or maximum distance between the dividers we insert.

Using polynomials we can answer this question more easily. We are really
interested in the coefficient of xm in the expansion of (x0 + · · ·+ xr)n. Using the
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sum of a finite geometric progression, we know that we are really interested in
the coefficient of xm in the expansion of(

1− xr+1

1− x

)n

= (1− xr+1)n(1− x)−n.

We know that we can expand (1− xr+1)n using the binomial theorem, and
we can expand (1− x)−n as we have seen earlier. We can then determine what
the coefficient of interest is.

Example. How many integer solutions are there to the equation

x1 + x2 + x3 + x4 = 15

if 0≤ xi ≤ 6.
The number of solutions can be obtained by identifying the coefficient of x15

in the expansion of (1− x7)4(1− x)−4. Using the binomial theorem

(1− x7)4 = 1−4x7 +6x14−4x21 + x28.

Further, we know that the expansion of (1− x)−4 is

(1− x)−4 =
∞

∑
k=0

(
3+ k

k

)
xk.

The coefficient of x15 in the expansion of (1− x7)4(1− x)−4 can be obtained
by considering the following pairs of coefficients: {the coefficient of x0 in the
expansion of (1− x7)4 and the coefficient of x15 in the expansion of (1− x)−4},
{the coefficient of x7 in the expansion of (1− x7)4 and the coefficient of x8 in
the expansion of (1−x)−4}, {the coefficient of x14 in the expansion of (1−x7)4

and the coefficient of x1 in the expansion of (1− x)−4}. There is no other way
to obtain x15 in the expansion of (1− x7)4(1− x)−4. Using this knowledge we
obtain

c15 = (1×
(

18
15

)
)+(−4×

(
11
8

)
)+(6×

(
4
1

)
) = 816−660+24 = 180.

The number of integer solutions to the given equation subject to the constraints
is 180.

Remarks. Counting using polynomials is an extremely powerful technique.
Also, determining the number of integer solutions to an equation is an excellent
abstraction for many problems, such as the balls and bins problem and the pirates
and gold problem.
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2 Combinatorial arguments
A combinatorial argument is a method of proof that is often used to prove certain
identities involving combinatorial objects. Some identities are not easily amenable
to algebraic manipulation, or it may be simpler to use a combinatorial argument.
The core of a combinatorial argument lies in demonstrating that a set of objects
is being counted in two different ways. It is best to illustrate this idea with some
examples.

Example 1. Give a combinatorial argument to show that

n

∑
k=1

k
(

n
k

)
= n2n−1.

Solution. To solve this problem, we first attempt to identify what sets might
be getting counted. The right side of the identity is easier to start with because
it does not involve a summation. Recall that the number of ways to select a
subset from a set of n objects is 2n; for each object, you can choose to include
or exclude it from a subset. Also, the number of ways of selecting one object
from a set of size n is n. In this question, it does appear that we are doing both:
selecting one object from a set of size n and then picking a subset from a set of
size n−1 resulting in n2n−1 choices.

We can advance the argument by creating an analogy. Imagine that we are
selecting a committee from a set of n people. We also want to choose a leader
for the committee. We require that a committee have a leader but it need not
include anyone else. In how many ways can we choose such a committee?

One approach is to be oblivious to the size of the committee. Let us pick one
person to lead the committee (there are n ways to do so) and then pick a subset
(possibly the empty set) of the remaining n−1 candidates to comprise the rest
of the committee. There are exactly n2n−1 ways to choose a committee! Here
we do not explicitly care about the size of the committee.

Another approach may be to partition the possibilities based on the size of
the committee. If the size of the committee is k, we can first pick the committee
members in

(n
k

)
ways and then select a leader in k ways. That means that

there are k
(n

k

)
ways to pick a committee of size k and its leader. The smallest

possible committee has to have at least one member (the leader) and the largest
committee can have at most n members. Because there is no restriction on the
size of the committee, all sizes are possible and therefore ∑

n
k=1 k

(n
k

)
is also the

number of ways to choose a committee, and its leader, from a pool of n people.
But this is exactly what we did earlier, except that we used a different procedure
that did not partition the possibilities based on the size of the committee.
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Thus we have shown that
n

∑
k=1

k
(

n
k

)
= n2n−1.

Example 2. Give a combinatorial argument to show that

n

∑
k=1

k
(

n
k

)2

= n
(

2n−1
n−1

)
.

Solution. We can proceed in a manner similar to the previous example. Here
the right side of the identity suggests that we are selecting an object from n
possible objects and another n− 1 objects from a set of 2n− 1 objects. In all,
we are selecting n objects.

We are likely to leap ahead and say: “Hey, maybe we are selecting a committee
of size n from a set of 2n people and selecting its leader.” In that case, we should
ask ourselves why there are only n choices for the leader and not 2n. This suggests
that the leader of the committee may be restricted to a special set of n people.
How could we explain that?

To proceed further, consider selecting a committee of size n from a group of
n ECE and n CS professors. The requirement is that the leader of the committee
be an ECE professor. If we elaborate on this situation further and make use of
the fact that

(n
k

)
=

( n
n−k

)
, we will find that the left side and the right side of the

identity are indeed the number of ways of choosing such a committee.
The two examples above illustrate the principle of using a combinatorial ar-

gument but there is much verbiage that can be skipped. To provide a brief and
precise argument, follow the next example.

Example 3. Prove that

r

∑
k=0

(
n+ k

k

)
=

(
n+ r +1

r

)
using a combinatorial argument.
Proof. Consider a set of n + r + 1 integers. Without loss of generality, we
can assume that the integers are {1,2,3, . . . ,n,n+1, . . . ,n+r+1}. The number
of ways to choose a set of n + 1 integers from this set of n + r + 1 integers is(n+r+1

n+1

)
=

(n+r+1
r

)
.

We can also partition the subsets of size n+1 on the basis of the maximum
element in the subset. Because we are selecting a subset with n + 1 integers
from this set of n + r + 1 integers, we have to choose either n + 1 or a larger
integer. If n+1 is the maximum element in the subset, then there is only 1 way
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to choose such a subset. If n + 2 is the largest element of the subset then the
number of such subsets is

(n+1
n

)
=

(n+1
1

)
. If n + 3 is the largest element of the

subset then there are
(n+2

n

)
=

(n+2
2

)
such subsets. In general, if n+ k +1 is the

largest element of the subset then there are
(n+k

k

)
such subsets. The maximum

element of a subset of size n + 1 is no smaller than n + 1 and no larger than
n+ r +1, and we are interested in all size n+1 subsets of the original set of size
n+ r +1. This is indeed what the left side of the proposition represents.

The left side and the right side represent different ways to count the same
subsets and therefore the proposition is true.

2

The textbook suggests a different approach to the above example (Rosen, 6th
edition, p369, q27). There are numerous combinatorial arguments for the same
identity, and it requires some creativity to develop a combinatorial argument.

6


