A *set* is an unordered collection of objects, called its *elements*.

{Groucho, Chico, Harpo, Zeppo, Gummo} = {Chico, Groucho, Harpo, Gummo, Zeppo} = {Groucho, Gummo, Harpo, Chico, Harpo, Groucho, Groucho, Zeppo}

Some famous sets:

- The suits $\{ \blacklozenge, \heartsuit, \diamondsuit, \clubsuit \}$
- The non-negative integers (or natural numbers) $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$
- The integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- The real numbers ${\rm I\!R}$
- The empty set $\emptyset = \{ \}$
- {Ø} = {{}} is a set with one element, and thus is *not* the empty set. The unique element of {Ø} is the empty set.
- $\{\emptyset, \mathbb{N}, \mathbb{Z}\}$ is a set with three elements (which happen to be sets).

Set Notation

- $x \in S$ x is an element of S
- $x \not\in S$ x is not an element of S. $\neg(x \in S)$

 $A \subseteq B \qquad A \text{ is a subset of } B.$ Every element of A is also an element of B. $\forall x (x \in A \rightarrow x \in B)$

- $A \supseteq B \qquad A \text{ is a superset of } B.$ $B \subseteq A$ $\forall x (x \in B \rightarrow x \in A)$
- $\begin{array}{ll} \boldsymbol{A} = \boldsymbol{B} & A \text{ and } B \text{ are } \boldsymbol{equal.} \\ & \text{Every element of } A \text{ is also an element of } B \text{ and vice versa.} \\ & (A \subseteq B) \land (B \subseteq A). \\ & \forall x \, (x \in A \leftrightarrow x \in B) \end{array}$
- $A \subset B \qquad A \text{ is a proper subset of } B.$ $(A \subseteq B) \land (A \neq B).$ $(A \subseteq B) \land (A \not\supseteq B).$ $\forall x (x \in A \to x \in B) \land \exists y (y \in B \land y \notin A)$
- $\begin{array}{ll} \boldsymbol{A} \supset \boldsymbol{B} & A \text{ is a } \boldsymbol{proper superset of } B. \\ & B \subset A \\ & (B \subseteq A) \land (B \neq A). \\ & (B \subseteq A) \land (B \not\supseteq A). \\ & \forall x \, (x \in B \rightarrow x \in A) \land \exists y \, (y \in A \land y \notin B) \end{array}$

- Harpo \in {Groucho, Chico, Harpo, Gummo, Zeppo}
- Karl \notin {Groucho, Chico, Harpo, Gummo, Zeppo}
- {Groucho, Chico, Harpo} \subseteq {Groucho, Chico, Harpo, Gummo, Zeppo}
- {Groucho, Chico, Harpo} \subset {Groucho, Chico, Harpo, Gummo, Zeppo}
- {Groucho, Chico, Harpo} \subseteq {Groucho, Chico, Harpo}
- $\emptyset \subseteq \{$ Groucho, Chico, Harpo $\}$

Proof: No matter what x is, $x \in \emptyset$ is false. Thus, $\forall x \ ((x \in \emptyset) \rightarrow \{\text{Groucho, Chico, Harpo}\})$ is *vacuously* true!

- $\varnothing \notin \{$ Groucho, Chico, Harpo $\}$
- $\emptyset \in \{\emptyset, \text{Ren, Stimpy}\}$
- $\emptyset \subset \{\emptyset, \operatorname{Ren}, \operatorname{Stimpy}\}$
- $\{\varnothing, \{\varnothing\}\} \in \{ \varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\emptyset, \{\varnothing\}\}\} \}$

Proof of Set Containment

Theorem: $A \subseteq B$

Proof: Let x be an arbitrary element of A.

— Insert proof of $x \in B$ here —

We conclude that every element of A is also an element of B.

Proof of Set Equivalence

Theorem: A = B

Proof:

— Insert proof of
$$A \subseteq B$$
 here —

— Insert proof of $B \subseteq A$ here —

We conclude that A and B are the same set.

Describing/defining sets

- 1. List all the elements (only for finite sets)
 - $\{ \blacklozenge, \heartsuit, \diamondsuit, \clubsuit \}$
 - {Eenie, Meenie, Minie, Moe}
 - {Larry, Curly, Shemp, Curly Joe, Moe}
 - $\{ \} = \emptyset$
- 2. List the elements 'implicitly' (but this is ambiguous)
 - $\{0, 1, 2, 3, 4, \ldots\}$
 - $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
 - $\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 \dots\}$
 - $\{0, 2, 1, 5, 7, 3, 10, 4, 13, 15, 6, 18, 20, 8, 23, 9, 26, 28, 11, 31, 12, \ldots\}$
- 3. *Set-builder notation:* describe a property that defines the set.
 - $\{x \mid P(x)\}$ = the set of all x such that P(x) is true.
 - $\{x \in A \mid P(x)\}$ = the set of all $x \in A$ such that P(x) is true.
 - $\{x \mid x \text{ is prime}\}$
 - $\{x \mid x/2 \in \mathbb{Z}\} = \{x \mid \exists y \in \mathbb{Z} (x = 2y)\}$
 - $\{x \in CS173 \mid x \text{ is asleep}\}$

4. Recursively

- You can legally vote if your father or grandfather could legally vote.
- $0 \in \mathbb{N}$, and for every $x \in \mathbb{N}$ we also have $x + 1 \in \mathbb{N}$.
- $1 \in T$, and for every $x \in T$ we also have $2x \in T$.
- $0 \in S$, and for every $x \in S$ we also have $x + 2\sqrt{x} + 1 \in S$.
- Every axiom is a theorem, and any statement that can be logically inferred from theorems is a theorem.

Recursive set definitions are always *exclusive*: Anything that does not satisfy the recursive condition is not and element of the set.

5. Combining other sets:

• Union
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

• Intersection $A \cap B = \{x \mid x \in A \land x \in B\}$

U

D

• Symmetric difference $A \oplus B = \{x \mid x \in A \oplus x \in B\}$

• Complement $\overline{A} = \{x \mid x \notin A\} = U \setminus A$

Suppose

- $A = \{$ Eenie, Meeine, Minie, Moe $\}$
- $B = \{$ Larry, Curly, Shemp, Moe $\}$
- $C = \{$ Homer, Ned, Willie, Krusty, Moe $\}$
- $D = \{$ Eenie, Krusty, Shemp $\}$

Then what are the following sets?

- $A \cup B =$
- $\bullet \ A \cap B =$
- $A \setminus B =$
- $C \cap D =$
- $(A \cap C) \cap D =$
- $(A \cup B) \setminus C =$
- $(A \cup B) \setminus D =$
- $B \oplus C =$

The	16	binary	bool	lean	fune	ctions
-----	----	--------	------	------	------	--------

p	q		$p \lor q$	$p \leftarrow q$	p	$p \rightarrow q$	q	$p \leftrightarrow q$	$p \wedge q$
T	T	T	Т	Т	Т	Т	T	T	T
T	F	T	T	T	T	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F
	' '	'	'						
p	q	$p\uparrow q$	$p\oplus q$	$\neg q$	$p \not\rightarrow q$	$\neg p$	$p \not\leftarrow q$	$p \downarrow q$	F
T	T	F	F	F	F	F	F	F	F
T	F	T	T	T	Т	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F

The 16 binary set operations

A	B		$A \cup B$	$A \cup \overline{B}$	A	$\overline{A} \cup B$	B	$\overline{A \oplus B}$	$A \cap B$
T	T	Т	Т	Т	Т	Т	Т	Т	Т
T	F		Т	T	T	F	F	F	F
F	Т		Т	F	F	T	T	F	F
F	F		F	T	F	T	F	T	F
A	В	$\overline{A \cap B}$	$A \oplus B$	\overline{B}	$A \setminus B$	\overline{A}	$B \setminus A$	$\overline{A \cup B}$	Ø
T	Т	F	F	F	F	F	F	F	F
T	F	T	T	T	T	F	F	F	F
F	T	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F

Don't these look familiar?

Double negation: $\neg \neg p \iff p$				
$p \wedge T \iff p$	Identity	$p \lor F \iff p$		
$p \wedge F \iff F$	Domination	$p \lor T \iff T$		
$p \wedge p \iff p$	Idempotence	$p \lor p \iff p$		
$p \land \neg p \iff F$	Negation	$p \lor \neg p \iff T$		
$p \land (p \lor q) \iff p$	Absorption	$p \lor (p \land q) \iff p$		
$p \wedge q \iff q \wedge p$	Commutativity	$p \lor q \iff q \lor p$		
$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$	Associativity	$(p \lor q) \lor r \iff p \lor (q \lor r)$		
$p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$	Distribution	$p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$		
$\neg (p \land q) \iff \neg p \lor \neg q$	De Morgan's laws	$\neg (p \lor q) \iff \neg p \land \neg q$		

Common logical equivalences

Common set equivalences

Double negation: $\overline{\overline{A}} = A$				
$A \cap U = A$	Identity	$A \cup \varnothing = A$		
$A\cap \varnothing = \varnothing$	Domination	$A \cup U = U$		
$A \cap A = A$	Idempotence	$A \cup A = A$		
$A\cap \neg A=\varnothing$	Negation	$A \cup \neg A = U$		
$A \cap (A \cup B) = A$	Absorption	$A \cup (A \cap B) = A$		
$A \cap B = B \cap A$	Commutativity	$A \cup B = B \cup A$		
$(A \cap B) \cap C = A \cap (B \cap C)$	Associativity	$(A \cup B) \cup C = A \cup (B \cup C)$		
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distribution	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		
$\neg (A \cap B) = \neg A \cup \neg B$	De Morgan's laws	$\neg(A \cup B) = \neg A \cap \neg B$		

Don't these look familiar?