
Hashing and its applications

1 Pattern matching
Suppose we are trying to find a pattern string P in a long document D. How
can we do it quickly and efficiently?

Hash the pattern P into, say, a 16-bit value. Then run through the file,
hashing each set of |P| consecutive characters into a 16-bit value. If we ever
get a match for a pattern, we can check to see if it corresponds to an actual
pattern match. (In this case, we want to double-check and not report any
false matches!) Otherwise we can just move on. We can use more than 16
bits, too; we would like to use enough bits so that we will obtain few false
matches.

This scheme is efficient, as long as hashing is efficient. Of course hashing
can be a very expensive operation, so in order for this approach to work,
we need to be able to hash quickly on average. In fact, a simple hashing
technique allows us to do so in constant time per operation!

The easiest way to picture the process is to think of the file as a sequence
of digits, and the pattern as a number. Then we move a pointer in the file one
character at a time, seeing if the next |P| digits gives us a number equal to
the number corresponding to the pattern. Each time we read a character in
the file, the number we are looking at changes is a natural way: the leftmost
digit a is removed, and a new rightmost digit b is inserted. Hence, we update
an old number N and obtain a new number N′ by computing

N′ = 10(N −a·10|P|−1)+b.

When dealing with a string, we will be reading characters (bytes) instead
of numbers. Also, we will not want to keep the whole pattern as a number.
If the pattern is large, then the corresponding number may be too large to
do effective comparisons! Instead, we hash all numbers down into say 16
bits, by reducing them modulo some appropriate prime p. We then do all the
mathematics (multiplication, addition) modulo p, i.e.,

N′ = [10(N −a·10|P|−1)+b] mod p.

1

P = 17935
p = 251
P mod p = 114

D = 6386179357342...

63861 mod p = 117
38617 mod p = 214
86179 mod p = 86
61793 mod p = 47
17935 mod p = 114
79357 mod p = 41
93573 mod p = 201
35734 mod p = 92
57342 mod p = 114
...

Figure 1: A fingerprinting example. The pattern P is a 5 digit number.
Note successive calculations take constant time: 38617 mod p = ((63861
mod p)− (60000 mod p))·10+ 7 mod p. Also note that false matches are
possible (but unlikely); 57432 = 17935 mod p.

All operations mod p can be made quite efficient, so each new hash value
takes only constant time to compute!

This pattern matching technique is often called fingerprinting. The idea is
that the hash of the pattern creates an almost unique identifier for the pattern
– like a fingerprint. If we ever find two fingerprints that match, we have a good
reason to expect that they must come the same pattern. Of course, unlike real
fingerprints, our hashing-based fingerprints do not actually uniquely identify
a pattern, so we still need to check for false matches. But since false matches
should be rare, the algorithm is very efficient!

One question remains. How should we choose the prime p? We would like
the prime we choose to work well, in that it should have few false matches.
The problem is that for every prime, there are certainly some bad patterns
and documents. If we choose a prime in advance, then someone can try to set
up a document and pattern that will cause a lot of false matches, making our
fingerprinting algorithm go very slowly.

A natural approach is to choose the prime p randomly. This way, nobody

2

can set up a bad pattern and document in advance, since they are not sure
what prime we will choose.

Let us make this a bit more rigorous. Let π(x) represent the number of
primes that are less than or equal to x. It will be helpful to use the following
fact: x

lnx
≤ π(x)≤ 1.26

x
lnx

.

Consider any point in the algorithm, where the pattern and document do
not match. If our pattern has length |P|, then at that point we are comparing
two numbers that are each less than 10|P|. In particular, their difference (in
absolute value) is less than 10|P|. What is the probability that a random
prime divides this difference? That is, what is the probability that for the
random prime we choose, the two numbers corresponding to the pattern and
the current |P| digits in the document are equal modulo p.

First, note that there are at most log2 10|P| distinct primes that divide the
difference, since the difference is at most 10|P| (in absolute value), and each
distinct prime divisor is at least 2. Hence, if we choose our prime randomly
from all primes up to Z, the probability we have a false match is at most

log2 10|P|

π(Z)
.

Now, the probability that we have a false match anywhere is at most |D|
times the probability that we have a false match in any single location, by
the union bound. Hence the probability that we have a false match anywhere
is at most

|D| log2 10|P|

π(Z)
.

3

