
Insertion Sort: Analysis and Correctness
Insertion sort is a comparison-based sorting algorithm that we will use

as an example to understand some aspects of algorithmic analysis and to
demonstrate how an iterative algorithm can be shown to be correct.

The principle behind insertion sort is to remove an element from an un-
sorted input list and insert in the correct position in an already-sorted, but
partial list that contains elements from the input list. It can be implemented
using an additional list or with the same list. We will use the latter scenario
in our example. The pseudocode for Insertion Sort is as follows, where A is a
list with indices from 1 to N.

Algorithm 1 InsertionSort(A)
1: for j← 2 to N do
2: key← A[j ]
3: i← j−1
4: while i > 0 AND A[i] > key do
5: A[i+1]← A[i]
6: i← i−1
7: end while
8: A[i+1]← key
9: end for

Runtime complexity
We will first analyze Insertion Sort and determine its runtime complexity.
We will use ti to represent the time needed to execute statement i in the
pseudocode above. Each statement can be executed in constant time because
all operations involve a fixed number of bits. The running time of the algorithm
is, therefore, determined by the number of times each statement is executed.

Statement 1 is the header for the for loop. This statement is executed
N times (once more than the number of loop iterations). Statements 2 and

1

http://en.wikipedia.org/wiki/Insertion_sort


3 are each executed N− 1 times. Statement 4 is the header for the while
loop. The number of times this statement is executed is variable; the number
of executions depends on the contents of the array A and value of j . Let x
be the number of times statement 4 is executed. Statements 5 and 6 will
be executed as long as the condition for the while statement remains true,
which means they will be executed x−1 times. (Statements 7 and 9 are for
convenience and do not involve any execution.) Statement 8 is executed as
many times as statements 2 and 3 because they are part of the same for loop
body, which is N−1 times.

This type of analysis is based on the Random Access Machine
model of a computer. In this model:

• Each simple operation takes constant time. What are sim-
ple operations? Arithmetic operations on fixed-size data el-
ements, data movement operations (load, store, copy) and
control operations (conditional and unconditional branches,
subroutine calls and returns).

• Loops and subroutines do not necessarily take constant time.

• All memory accesses take a constant amount of time.

The running time of Insertion Sort can be described by a function t(N)
where

t(N) = N·t1 +(N−1)·(t2 + t3)+ x·t4 +(x−1)·(t5 + t6)+ (N−1)t8.

We do not know x exactly but we can derive an upper bound for x. For a
fixed j , i.e., for one iteration of the outer loop, let xj be the maximum number
of times Statement 4 can be executed. i starts at j− 1 therefore statement
4 is executed no more than j− 1 + 1 = j times because i is decremented by
1 within the while loop. Thus xj = j and an upper bound on x is

∑N
j=2 xj =

∑N
j=2 j = (

∑N
j=1 j)−1 = N(N +1)/2−1 = (N2 +N−2)/2.

Using the upper bound on x that we have established (above), we can
express t(N) in the worst case as

t(N) = k1n2 +k2n+k3,

2

http://en.wikipedia.org/wiki/Random_access_machine


where k1,k2,k3 are some constants that we can obtain by algebraic manipu-
lation.

Now (k1 +k2 +k3)N2 ≥ t(N) for N ≥ 1 thus establishing that, in the worst
case, t(N) ∈ O(N2). Also, using k = min{k1,k2,k3}, kN2 ≤ t(N) for N ≥ 1.
Thus t(N)∈Ω(N2).

t(N)∈Ω(N2) and t(N)∈O(N2) in the worst case therefore t(N)∈Θ(N2)
in the worst case.

We have established the asymptotic complexity of Insertion Sort in the
worst case. We will now prove the correctness of the algorithm.

Proof of Correctness
We will establish the correctness of Insertion Sort using loop invariants.
A loop invariant is a statement that is true across multiple iterations of a loop.
In the remainder of this discussion, we will use A[i..j ] to denote the sublist
of A starting from the ith element and extending to the jth element (both end
points inclusive).

Theorem 1 Insertion Sort (Algorithm 1) correctly sorts input list A.

Proof.
The first invariant, Inv1, that we will use is that at the start of each for

loop iteration (Statement 4) A[1..j−1] is a sorted permutation of the original
A[1..j−1].

Inv1 holds at the start because A[1..1] is sorted obviously. To prove that
Inv1 holds for each iteration, we must reason about the execution within the
loop. In particular we must show that after Statement 8 is executed A[1..j ] is
a sorted permutation of the original A[1..j ]. To this end, we will use another
invariant concerning the while loop, Inv2, which states that at the start of
the while loop body A[i..j ] are each greater than or equal to key.

Inv2 is true upon initialization (at the first iteration of the inner loop)
because i = j−1 and A[i] > key by explicit testing and A[j ] = key. The inner
loop maintains the invariant because the statement A[i + 1]← A[i] moves a
value in A that is known to be greater than key into A[i+1] which also held
a value that was at least equal to key.

3

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Loop_invariant


The inner loop (the while loop) does not destroy data in A because the
first iteration copies A[j ] into key. As long as key is restored to A we maintain
the invariant that A[1..j ] contains the first j elements of the original list. When
the inner loop terminates, we know that

• A[1..i] is sorted and is at most equal to key (which is true by default if
i = 0 and true because A[1..i] is sorted and A[i]≤ key if i > 0);

• A[i+1..j ] is sorted and at least equal to key because the loop invariant
held before i was decremented and that invariant was A[i..j ]≥ key;

• A[i+1] = A[i+2] if the loop is executed at least once and A[i+1] = key
if the loop did not execute at all.

With these observations, we know that A[i + 1]← key does not destroy any
data and gives us A[1..j ], which is a sorted permutation of the original j
elements of A.

Because Inv1 is maintained after a loop iteration, it is also maintained
even when the outer loop terminates. When the outer loop terminates, j =
N +1 and so A[1..N] is sorted.

2

4


