
Linear Programming
Linear programming is one of the powerful tools that one can employ forsolving optimization problems. This technique has proven to be of value insolving a variety of problems that include planning, routing, scheduling, as-signment and design.The purpose of this note is to describe the value of linear program models.It is not to describe in detail the algorithms used to solve linear programs.

1 Example: A Simple Manufacturing Problem

Suppose that a company that produces three products wishes to decide thelevel of production of each so as to maximize profits. Let x1 be the amount ofProduct 1 produced in a month, x2 that of Product 2, and x3 that of Product 3.Each unit of Product 1 yields a profit of 100, each unit of Product 2 a profitof 600, and each unit of Product 3 a profit of 1400. There are limitations on
x1, x2, and x3 (besides the obvious one, that x1, x2, x3 ≥ 0). First, x1 cannot bemore than 200, and x2 cannot be more than 300, presumably because of supplylimitations. Also, the sum of the three must be, because of labor constraints,at most 400. Finally, it turns out that Products 2 and 3 use the same pieceof equipment, with Product 3 using three times as much, and hence we haveanother constraint x2 +3x3 ≤ 600. What are the best levels of production?The total profit is represented by the expression 100x1 + 600x2 + 1400x3and this is the function that we seek to maximize, and this is also called the
objective function. The constraints are as described in the problem setup.The linear program is then represented asmaximize 100x1 +600x2 +1400x3subject to the constraints

x1 ≤ 200
x2 ≤ 300

x1 + x2 + x3 ≤ 400
x2 +3x3 ≤ 600
x1, x2, x3 ≥ 0

1

http://en.wikipedia.org/wiki/Linear_programming


A vector {x1, x2, x3} that satisfies the constraints is called a feasible so-lution. The optimal solution is one of the feasible solutions. The set of allfeasible solutions forms a polyhedron in three-dimensional space.

Figure 1: A geometric visualization of the constraints and objective functionfor the linear program in Section 1.
We wish to maximize the linear function 100x1 + 600x2 + 1400x3 over allpoints of this polyhedron (Figure 1). Geometrically, the linear equation 100x1 +600x2 + 1400x3 = c can be represented by a plane parallel to the one deter-mined by the equation 100x1 +600x2 +1400x3 = 0. This means that we want tofind the plane of this type that touches the polyhedron and is as far towardsthe positive orthant as possible. Obviously, the optimum solution will be avertex (or the optimum solution will not be unique, but a vertex will do). Ofcourse, two other possibilities with linear programming are that (a) the opti-mum solution may be infinity, or (b) that there may be no feasible solution atall. Any standard method for solving an LP will detect unboundedness or thenon-existence of solutions.

2



2 Linear Programs

Linear programs, in general, have the following form: there is an objectivefunction that one seeks to optimize, along with constraints on the variables.
The objective function and the constraints are all linear in the variables; that
is, all equations have no powers of the variables, nor are the variables multi-
plied together. As we shall see, many problems can be represented by linearprograms, and for many problems it is an extremely convenient representation.If one can solve linear programs (LPs) in general then the central questionis how an optimization problem can be reduced to an LP formulation.There are polynomial-time algorithms for solving LPs. One measures thesize of an LP using the number of variables (n) and the number of constraints(m) thus a polynomial-time algorithm has a running time that is a polynomialin n and m.Polynomial-time solutions to LPs rely on interior-point methods that wereinitially suggested by Khachiyan and made efficient by Karmarkar. More often,however, LPs are solved using the Simplex method devised by Dantzig. TheSimplex method is not a polynomial-time algorithm (it can take an exponentialamount of time in some cases) but it solves many problems quickly and recentwork on the smoothed analysis of algorithms by Spielman and Teng explainsthis behaviour.The simplex method starts from a vertex of the polytope that representsthe feasible region and repeatedly looks for a vertex that is adjacent, and hasbetter objective value. That is, it is a kind of hill-climbing in the vertices of thepolytope. When a vertex is found that has no better neighbour, simplex stopsand declares this vertex to be the optimum. (This is illustrated in Figure 1.The directed lines, starting at (0,0,0), indicate some choices that the Simplexmethod may make.) There are now implementations of simplex that routinelysolve linear programs with many thousands of variables and constraints.
3 Example: Production Scheduling

We have the demand estimates for our product for all months of 2011, di, i =1,2, . . . ,12, and they are very uneven, ranging from 4400 to 9200. We currentlyhave 30 employees, each of which produce 200 units of the product each monthat a salary of 5000; we have no stock of the product. How can we handle suchfluctuations in demand? Three ways:
3



• Overtime: but this is expensive since it costs 80% more than regularproduction, and has limitations, as workers can only work 30% overtime.
• Hire and fire workers: but hiring costs 2000, and firing costs 4000.
• Store the surplus production: but this costs 80 per item per month.
This problem can be formulated and solved as a linear program. As in allsuch reductions, the crucial first step is defining the variables:
• Let wi be the number of workers we have the ith month; we have w0 = 30.
• Let xi be the production for month i.
• Let oi be the number of items produced by overtime work in month i.
• Let hi and fi be the number of workers hired and fired, respectively, inthe beginning of month i.

• Let si be the amount of product stored after the end of month i.
The constraints then are as follows:
• Production: xi = 200wi + oi. The amount produced is based on regularwork and overtime work.
• Number of workers: wi = wi−1 + hi− fi,wi ≥ 0. This constraint reflectshow the number of workers may change. There is the natural addedconstraint that the number of workers be non-negative.
• Surplus: si = si−1 + xi−di ≥ 0. The amount in storage is past surplusplus new production less the demand.
• Overtime limits: oi ≤ 60wi because a worker can not take on more than30% overtime.
The objective is to minimize the operational cost:

min 5000 12∑
i=1 wi +2000 12∑

i=1 hi +4000 12∑
i=1 fi +80 12∑

i=1 si +45 12∑
i=1 oi.

4



4 Example: Fractional Knapsack

In the weighted knapsack problem, you have a bag that can carry up to Wpounds. You have n items labeled x1, . . . , xn. Item xi has weight wi and value
vi. You would like to select items to maximize the sum of the values withoutexceeding the weight limit of your knapsack.In the fractional version of this problem, one can select a fraction of anitem (reduce the weight) and obtain the same fraction of the value of that item.The fractional knapsack problem can easily be solved using a greedy al-gorithm that picks items using the maximum value per pound ordering. Thisproblem can also be encoded as a linear program as follows.The variables are f1, . . . , fn. fi indicates the fraction of xi that one selects.The objective is to maximize the sum of the value:

max n∑
i=1 fivi.

The constraints are to not exceed the weight capacity of the knapsack andto ensure that 0≤ fi ≤ 1.
n∑

i=1 fiwi ≤ W ;
fi ≥ 0, ∀i;
fi ≤ 1, ∀i.

The linear program described above can be solved in polynomial time (ei-ther using the greedy approach or using an interior point methods).If we insist that fi is either 0 or 1 then the nature of the problem changesdramatically. We return to the original weighted knapsack problem, which canbe solved in pseudopolynomial time using dynamic programming. By insistingthat the variables (of interest) be integers we shift the focus to integer linear
programs (ILPs), and integer linear programs are hard to solve (we do notbelieve we can solve all integer programs in polynomial time).
5 Example: Separating Points

Suppose that we have two sets of points in the plane, the black points (xi,yi), i =1, . . . ,m and the white points (xi,yi), i = m+1, . . . ,m+n. We wish to separate
5



them by a straight line ax + by = c, so that for all black points ax + by ≤ c,and for all white points ax +by≥ c. In general, this would be impossible. Still,we may want to separate them by a line that minimizes the sum of the “dis-placement errors” (distance from the boundary) over all misclassified points.Here is the LP that achieves this.
min e1 +e2 + · · ·+em +em+1 + · · ·+em+nsubject to

e1 ≥ ax1 +by1−c;
e2 ≥ ax2 +by2−c;...
em ≥ axm +bym−c;

em+1 ≥ −(axm+1 +bym+1−c);...
em+n ≥ −(axm+n +bym+n−c);

ei ≥ 0, ∀i.

6 Example: Shortest Paths in a Graph

Dijkstra’s algorithm is often used to describe a method for finding the shortestpath between two vertices in a graph when edge weights are all non-negative.It is possible to formulate the shortest path problem as an LP on a graph
G = (V ,E). The modelling here makes use of the idea of flow conservationacross a vertex.Let V = {vi} be the set of vertices and E = {eij} be the set of edges. (Avertex is represented as vi and the edge between vertices vi and vj is denoted
eij . We can assume that the graph is directed although the formulation iscorrect for undirected graphs as well.) Let lij be the length of edge eij . Wewill use s to denote the source vertex and t to denote the destination vertex.
xij is the indicator variable that is 1 if eij is on the shortest path between sand t and 0 otherwise.

6



The LP involves only xij as the variables. The objective is
min ∑

eij∈E
lijxij

and the constraints are∑
vj∈V

xij −
∑
vj∈V

xji = 1, vi = s;∑
vj∈V

xij −
∑
vj∈V

xji = −1, vi = t;∑
vj∈V

xij −
∑
vj∈V

xji = 0, vi 6= s,vi 6= t;
xij ≥ 0, ∀eij .

A key observation here is that this is an LP and not an ILP. We do not needto insist that xij be an integer. The solution (obtained by the Simplex methodor any other method) is guaranteed to have integer values for all variablesbecause any other choice would be suboptimal.
7 Example: Network Flow

Suppose we are given a data/traffic network (graph) with edge capacities. Thecapacity of an edge represents the amount of data/traffic that can be carried onthat edge. We would like to know what is the maximum amount of data/trafficthat can be supported between a source s and a destination t.For example, consider a graph the represents the road network of Vancou-ver. Each road can support a certain number of cars per hour. We would liketo determine the maximum number of cars per hour that can travel from UBCto downtown Vancouver using all possible routes. This maximum flow measurecan then be used to determine if more roads are needed or some roads needexpansion.The maximum network flow problem can also be cast as a linear program.Using notation that is similar to what we used for the shortest path problemwe have, we will use xij to represent the flow along edge eij and we will use
cij to represent the capacity of edge eij . (We are not considering edge weightsin this setting.)

7



s

a

b

c

d

t

5

2

1

3

2

3

1

2

5

Figure 2: An example network with flow capacities indicated for each edge.The maximum flow between s and t in this network is 6.
Our goal is to maximize the flow from the source (let’s denote this amountas f) and so the objective is max fsubject to the following constraints.
• Capacity constraints: xij ≤ cij , ∀eij ∈ E . The flow along an edge cannotexceed its capacity;
• Flow conservation: ∑

vj∈V xij −
∑

vj∈V xji = 0, ∀i 6= s, t.
• Source constraint: ∑

vj∈V xij −
∑

vj∈V xji = f, i = s,∀j;
• Sink constraint: ∑

vi∈V xij −
∑

vj∈V xji = f, j = t,∀i.
8 Comments

Linear programs can model a variety of problems. The insight is in trans-forming a problem into an LP formulation. When a problem can be mappedto an LP formulation then one can rely on standard algorithms (such as theSimplex method) to find a solution. It is, however, not always efficient to useLP formulations. For many problems, where the problem structure is easilyunderstood, other algorithmic techniques (divide-and-conquer, dynamic pro-gramming, greedy algorithms) may be more efficient and practical.When one requires integer solutions in an LP, the problem is an IntegerLinear Program (ILP). ILPs may not be easy to solve. In general, ILPs may
8



take exponential time to solve. In specific instances, one can relax the require-ment that solutions be integers, solve the relaxed LP, and then perform somerounding on non-integers to obtain integer solutions. Rounding is applicableto some problems and is not effective for many others.It is not always possible to map a problem to an LP. This situation occurswhen some constraints are non-linear or when the objective function is non-linear. Non-linear programs (NLPs) can be solved by other methods. Someinstances of NLPs can be solved in polynomial time (for example, when theconstraints and the objective function are convex) but NLPs in general arecomputationally hard.

9


	Example: A Simple Manufacturing Problem
	Linear Programs
	Example: Production Scheduling
	Example: Fractional Knapsack
	Example: Separating Points
	Example: Shortest Paths in a Graph
	Example: Network Flow
	Comments

