
Even number of odd vertices

Theorem:
∑

v∈V

deg(v) = 2|E| for every graph G = (V, E).

Proof:

!

Theorem: Every graph has an even number of vertices with odd degree.

Proof:

!
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Even number of odd vertices

Theorem:
∑

v∈V

deg(v) = 2|E| for every graph G = (V, E).

Proof: Let G be an arbitrary graph.

Split each edge of G into two ‘half-edges’, each with one endpoint.

Any vertex v is incident to deg(v) half-edges.

Thus, the number of half-edges is
∑

v∈V deg(v).

Every edge was split into exactly two half-edges.

Thus, the number of half-edges is also 2|E|. !

Theorem: Every graph has an even number of vertices with odd degree.

Proof: The previous theorem implies that the sum of the degrees is even.

The sum of the even degrees is obviously even.

Thus, the sum of the odd degrees is even. !
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Induction on Graphs

Theorem: P (G) for every graph G.

Proof: Let G = (V, E) be an arbitrary graph.

Assume that P (F ) is true for every proper subgraph F of G.

— Insert proof of P (G) here —
(almost always by cases)

Thus, by induction, P (G) is true for every graph G. !

Typical induction strategies:

• Let e be an arbitrary edge in G, and let G′ = (V, E \ {e}).

• Let v be an arbitrary vertex in G, and let G′ be the subgraph of G
obtained by deleting v and all its incident edges.

• Let ! be an arbitrary leaf (vertex of degree 1) in G, and let G′ be the
subgraph of G obtained by deleting ! and its incident edge.

• Let e be an arbitrary edge, and let G′ be the graph obtained by con-
tracting e to a single vertex. This approach requires a different in-
ductive hypothesis: Assume P (F ) for every contraction F of G. See
http://en.wikipedia.org/wiki/Edge contraction.
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Doug’s Induction Trap

Non-Theorem: For any connected graph G where every vertex has degree
3, it is not possible to disconnect G by removing a single edge.

“No connected 3-regular graph has a cut edge.”

Non-Proof: Every 3-regular graph has an even number of vertices.

• Base case: The clique of size 4 is the smallest connected 3-regular
graph. It does not have a cut edge.

• Induction step: Let G be an arbitrary 3-regular graph with n vertices,
for some n ≥ 4.
By the inductive hypothesis, G does not have a cut edge.
Pick two arbitrary edges in G, split them with two new vertices spanned
by a new edge.

e'

e

v'

v

The new graph G′ has n + 2 vertices.
Every vertex in G′ has degree 3, and G′ has no cut edge.

!

Counterexample:
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Walk =⇒ Path

Theorem: For any graph G = (V, E) and any vertices u, v ∈ V ,
if there is a walk in G from u to v, then there is a path in G from u to v.

Intuition. If the walk isn’t a path, it contains a cycle. Remove it (except for
one vertex). Eventually we get a path.

Proof:

!
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Walk =⇒ Path

Theorem: For any graph G = (V, E) and any vertices u, v ∈ V ,
if there is a walk in G from u to v, then there is a path in G from u to v.

Proof: Let G = (V, E) be an arbitrary graph.

Let v0, v1, . . . , vn be an arbitrary walk in G.
(We need to prove there is a path in G from v0 to vn.)

Assume that for any integer k < n, there is a path in G from v0 to vk.

There are two cases to consider: n = 0 and n ≥ 1.

• If n = 0, then the walk v0 is a path from v0 to v0.

• Suppose n ≥ 1.
By the inductive hypothesis, there is a path in G from v0 to vn−1.
Either vn lies on this path or it doesn’t.

– If vn lies on this path, then stopping at vn gives us a shorter path
in G from v0 to vn.

– If vn does not lie on this path, then appending vn gives us a longer
path in G from v0 to vn.

In either case, we have found a path in G from v0 to vn.

!
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Adding or Removing One Edge

Theorem: Adding an edge from any graph G either joins two components
of G or adds a cycle to G, but not both.

Proof: Let G be an arbitrary graph, let e = {u, v} be any edge that is not
in G, and let G′ = (V, E ∪ {e}).

• If u and v are in different components of G, those two components are
joined in G′.

If any cycle in G′ contains edge e, then it contains another path from u
to v, all of whose edges are in G, which is impossible. Thus, no cycle
in G′ contains edge e. It follows that every cycle in G′ is also a cycle
in G.

• If u and v are in the same component of G, then they are connected by
a path in G.

Adding the edge e creates a cycle in G′.

Consider two arbitrary vertices that are connected by a walk in G′. If
the walk contains e, we can use the rest of the new cycle through e
instead. Thus, those two vertices are also connected by a walk that
does not use e, or in other words, a walk in G.

Conversely, any walk in G is also a walk in G′.

!

Theorem: Removing an edge from any graph G either splits a connected
component of G or removes a cycle from G, but not both.
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Trees have leaves!

A leaf is a vertex with degree 1.

Theorem: Every tree G with more than one vertex has at least two leaves.

Proof: Let G be an arbitrary connected acyclic graph with more than one
vertex.

Because G is connected and has more than one vertex, every vertex has
degree at least 1.

Let v0, v1, . . . , vn be a maximal path in G, that is, a path that cannot be made
longer by adding a vertex to either end.

Because the path is maximal, it must visit every neighbor of vn.

If vn is adjacent to vi for any i < n− 1, then vi, vi+1, . . . , vn, vi is a cycle in G.

Because G is acyclic, no such cycle exists.

Thus, vn is adjacent to vn−1 and nothing else; in other words, vn is a leaf.

By a similar argument, v0 is a leaf. !
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Trees have leaves!

A leaf is a vertex with degree 1.

Theorem: Every tree G with more than one vertex has at least two leaves.

Proof: Let G = (V, E) be an arbitrary tree.

By definition, G is connected, so every vertex has positive degree.

By earlier results,
∑
v∈V

deg(v) = 2|E| = 2|V |− 2.

If G has no leaves, then deg(v) ≥ 2 for every vertex v, which implies that∑
v∈V

deg(V ) ≥ 2|V |, which is impossible.

Similarly, if G has exactly one leaf, then
∑
v∈V

deg(V ) ≥ 2|V | − 1, which is

impossible.

We conclude that G has at least two leaves. !
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n-node trees have n − 1 edges

Theorem: Every tree G = (V, E) has |V |− 1 edges.
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Theorem: Every tree G = (V, E) has |V |− 1 edges.

Proof: Let G be an arbitrary connected acyclic graph.

By definition of ‘acyclic’, every subgraph of G is acyclic.

Assume |E(F )| = |V (F )|− 1 for every connected proper subgraph F of G.

There are two cases to consider: |V | = 1 and |V | ≥ 2.

• If G has only one vertex, then it has no edges, so |E| = |V |− 1.

• Suppose G has more than one vertex.

Since G is connected, it has at least one edge.

Let e be an arbitrary edge of G.

Consider the graph G \ e = (V, E \ {e}).

G is acyclic, so there is no path in G \ e between the endpoints of e.
Thus, G \ e has at least two connected components.

G is connected, so G \ e has at most two connected components.

Thus, G \ e has exactly two connected components. Call them A and B.

The induction hypothesis implies that |E(A)| = |V (A)|− 1.

The induction hypothesis implies that |E(B)| = |V (B)|− 1.

Because A and B are disjoint, we have |V | = |V (A)| + |V (B)|.

We also have |E| = |E(A)| + |E(B)| + 1.

Simple algebra now implies that |E| = |V |− 1.

!
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Theorem: Every tree G = (V, E) has |V |− 1 edges.

Proof: Let G be an arbitrary connected acyclic graph.

By definition of ‘acyclic’, every subgraph of G is acyclic.

Assume |E(F )| = |V (F )|− 1 for every connected proper subgraph F of G.

There are two cases to consider: |V | = 1 and |V | ≥ 2.

• If G has only one vertex, then it has no edges, so |E| = |V |− 1.

• Suppose G has more than one vertex.

Let v be an arbitrary vertex of G, and let d = deg(v).

Delete v and all its incident edges from G to get a subgraph G′.

G′ has exactly d connected components.

For all i, let ni be the number of vertices in the ith component of G′.

Then |V | = 1 +
d∑

i=1
ni.

The induction hypothesis implies that for all i, the ith component of G′

has ni − 1 edges.

Thus, |E| = d +
d∑

i=1
(ni − 1) =

d∑
i=1

ni.

Simple algebra now implies that |E| = |V |− 1.

!
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Theorem: Every tree G = (V, E) has |V |− 1 edges.

Proof: Let G be an arbitrary connected acyclic graph.

By definition of ‘acyclic’, every subgraph of G is acyclic.

Assume |E(F )| = |V (F )|− 1 for every connected proper subgraph F of G.

There are two cases to consider: |V | = 1 and |V | ≥ 2.

• If G has only one vertex, then it has no edges, so |E| = |V |− 1.

• Suppose G has more than one vertex.

Let v be an arbitrary leaf (vertex of degree 1).

Delete v and its incident edge from G to get a subgraph G′.

For any vertices u and w in G′, there is a path from u to w in G. This
path cannot pass through v (because deg(v) = 1), so it is also a path
in G′. Thus, G′ is connected.

G′ has |V |− 1 vertices.

Thus, the inductive hypothesis implies that G′ has |E|− 2 edges.

Simple algebra now implies that |E| = |V |− 1.

!
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