Even number of odd vertices

Theorem:
$$\sum_{v \in V} \deg(v) = 2|E|$$
 for every graph $G = (V, E)$.

Proof:

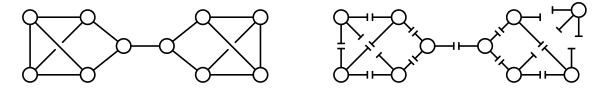
Theorem: *Every graph has an* even *number of vertices with* odd *degree.* Proof:

Even number of odd vertices

Theorem:
$$\sum_{v \in V} \deg(v) = 2|E|$$
 for every graph $G = (V, E)$.

Proof: Let *G* be an arbitrary graph.

Split each edge of G into two 'half-edges', each with one endpoint.



Any vertex v is incident to deg(v) half-edges.

Thus, the number of half-edges is $\sum_{v \in V} \deg(v)$.

Every edge was split into exactly two half-edges.

Thus, the number of half-edges is also 2|E|.

Theorem: Every graph has an even number of vertices with odd degree.Proof: The previous theorem implies that the sum of the degrees is even.The sum of the even degrees is obviously even.

Thus, the sum of the odd degrees is even.

Induction on Graphs

Theorem: P(G) for every graph G.

Proof: Let G = (V, E) be an arbitrary graph.

Assume that P(F) is true for every proper subgraph F of G.

— Insert proof of P(G) here — (almost always by cases)

Thus, by induction, P(G) is true for every graph G.

Typical induction strategies:

- Let e be an arbitrary edge in G, and let $G' = (V, E \setminus \{e\})$.
- Let v be an arbitrary vertex in G, and let G' be the subgraph of G obtained by deleting v and all its incident edges.
- Let ℓ be an arbitrary leaf (vertex of degree 1) in G, and let G' be the subgraph of G obtained by deleting ℓ and its incident edge.
- Let e be an arbitrary edge, and let G' be the graph obtained by *contracting* e to a single vertex. This approach requires a different inductive hypothesis: Assume P(F) for every *contraction* F of G. See http://en.wikipedia.org/wiki/Edge_contraction.

Doug's Induction Trap

Non-Theorem: For any connected graph *G* where every vertex has degree 3, it is not possible to disconnect *G* by removing a single edge.

"No connected 3-regular graph has a cut edge."

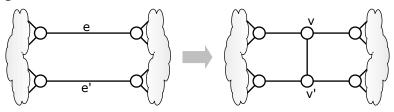
Non-Proof: Every 3-regular graph has an even number of vertices.

• *Base case:* The clique of size 4 is the smallest connected 3-regular graph. It does not have a cut edge.

• *Induction step:* Let G be an arbitrary 3-regular graph with n vertices, for some $n \ge 4$.

By the inductive hypothesis, G does not have a cut edge.

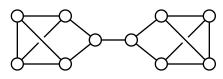
Pick two arbitrary edges in G, split them with two new vertices spanned by a new edge.



The new graph G' has n + 2 vertices.

Every vertex in G' has degree 3, and G' has no cut edge.

Counterexample:



Walk \implies Path

Theorem: For any graph G = (V, E) and any vertices $u, v \in V$, if there is a walk in G from u to v, then there is a path in G from u to v.

Intuition. If the walk isn't a path, it contains a cycle. Remove it (except for one vertex). Eventually we get a path.

Proof:

Walk \implies Path

Theorem: For any graph G = (V, E) and any vertices $u, v \in V$, if there is a walk in G from u to v, then there is a path in G from u to v.

Proof: Let G = (V, E) be an arbitrary graph.

Let v_0, v_1, \ldots, v_n be an arbitrary walk in G. (We need to prove there is a path in G from v_0 to v_n .)

Assume that for any integer k < n, there is a path in G from v_0 to v_k .

There are two cases to consider: n = 0 and $n \ge 1$.

- If n = 0, then the walk v_0 is a path from v_0 to v_0 .
- Suppose $n \ge 1$.

By the inductive hypothesis, there is a path in G from v_0 to v_{n-1} . Either v_n lies on this path or it doesn't.

- If v_n lies on this path, then stopping at v_n gives us a shorter path in *G* from v_0 to v_n .
- If v_n does not lie on this path, then appending v_n gives us a longer path in *G* from v_0 to v_n .

In either case, we have found a path in G from v_0 to v_n .

Adding or Removing One Edge

Theorem: Adding an edge from any graph *G* either joins two components of *G* or adds a cycle to *G*, but not both.

Proof: Let G be an arbitrary graph, let $e = \{u, v\}$ be any edge that is *not* in G, and let $G' = (V, E \cup \{e\})$.

• If *u* and *v* are in different components of *G*, those two components are joined in *G*'.

If any cycle in G' contains edge e, then it contains another path from u to v, all of whose edges are in G, which is impossible. Thus, no cycle in G' contains edge e. It follows that every cycle in G' is also a cycle in G.

• If *u* and *v* are in the same component of *G*, then they are connected by a path in *G*.

Adding the edge e creates a cycle in G'.

Consider two arbitrary vertices that are connected by a walk in G'. If the walk contains e, we can use the rest of the new cycle through e instead. Thus, those two vertices are also connected by a walk that does not use e, or in other words, a walk in G.

Conversely, any walk in G is also a walk in G'.

Theorem: Removing an edge from any graph *G* either splits a connected component of *G* or removes a cycle from *G*, but not both.

Trees have leaves!

A *leaf* is a vertex with degree 1.

Theorem: *Every tree G with more than one vertex has at least two leaves.*

Proof: Let G be an arbitrary connected acyclic graph with more than one vertex.

Because G is connected and has more than one vertex, every vertex has degree at least 1.

Let v_0, v_1, \ldots, v_n be a *maximal* path in *G*, that is, a path that cannot be made longer by adding a vertex to either end.

Because the path is maximal, it must visit every neighbor of v_n .

If v_n is adjacent to v_i for any i < n-1, then $v_i, v_{i+1}, \ldots, v_n, v_i$ is a cycle in G.

Because G is acyclic, no such cycle exists.

Thus, v_n is adjacent to v_{n-1} and nothing else; in other words, v_n is a leaf.

By a similar argument, v_0 is a leaf.

Trees have leaves!

A *leaf* is a vertex with degree 1.

Theorem: *Every tree G with more than one vertex has at least two leaves.*

Proof: Let G = (V, E) be an arbitrary tree.

By definition, G is connected, so every vertex has positive degree.

By earlier results, $\sum_{v \in V} \deg(v) = 2|E| = 2|V| - 2$.

If G has no leaves, then $\deg(v) \ge 2$ for every vertex v, which implies that $\sum_{v \in V} \deg(V) \ge 2|V|$, which is impossible.

Similarly, if G has exactly one leaf, then $\sum_{v \in V} \deg(V) \ge 2|V| - 1$, which is impossible.

We conclude that *G* has at least two leaves.

<u>*n*-node trees have n-1 edges</u>

Theorem: Every tree G = (V, E) has |V| - 1 edges.

Theorem: Every tree G = (V, E) has |V| - 1 edges.

Proof: Let *G* be an arbitrary connected acyclic graph. By definition of 'acyclic', every subgraph of *G* is acyclic. Assume |E(F)| = |V(F)| - 1 for every connected proper subgraph *F* of *G*.

There are two cases to consider: |V| = 1 and $|V| \ge 2$.

- If G has only one vertex, then it has no edges, so |E| = |V| 1.
- Suppose *G* has more than one vertex.

Since G is connected, it has at least one edge.

Let e be an arbitrary edge of G.

Consider the graph $G \setminus e = (V, E \setminus \{e\})$.

G is acyclic, so there is no path in $G \setminus e$ between the endpoints of e. Thus, $G \setminus e$ has at least two connected components.

G is connected, so $G \setminus e$ has at most two connected components.

Thus, $G \setminus e$ has exactly two connected components. Call them A and B.

The induction hypothesis implies that |E(A)| = |V(A)| - 1.

The induction hypothesis implies that |E(B)| = |V(B)| - 1.

Because A and B are disjoint, we have |V| = |V(A)| + |V(B)|.

We also have |E| = |E(A)| + |E(B)| + 1.

Simple algebra now implies that |E| = |V| - 1.

_	_	_	_	

Theorem: Every tree G = (V, E) has |V| - 1 edges.

Proof: Let *G* be an arbitrary connected acyclic graph.

By definition of 'acyclic', every subgraph of G is acyclic.

Assume |E(F)| = |V(F)| - 1 for every connected proper subgraph *F* of *G*. There are two cases to consider: |V| = 1 and $|V| \ge 2$.

- If G has only one vertex, then it has no edges, so |E| = |V| 1.
- Suppose *G* has more than one vertex.

Let v be an arbitrary vertex of G, and let $d = \deg(v)$.

Delete v and all its incident edges from G to get a subgraph G'.

G' has exactly d connected components.

For all *i*, let n_i be the number of vertices in the *i*th component of G'.

Then
$$|V| = 1 + \sum_{i=1}^{d} n_i$$
.

The induction hypothesis implies that for all i, the ith component of G' has $n_i - 1$ edges.

Thus,
$$|E| = d + \sum_{i=1}^{d} (n_i - 1) = \sum_{i=1}^{d} n_i$$
.

Simple algebra now implies that |E| = |V| - 1.

Theorem: Every tree G = (V, E) has |V| - 1 edges.

Proof: Let *G* be an arbitrary connected acyclic graph.

By definition of 'acyclic', every subgraph of G is acyclic.

Assume |E(F)| = |V(F)| - 1 for every connected proper subgraph *F* of *G*.

There are two cases to consider: |V| = 1 and $|V| \ge 2$.

- If G has only one vertex, then it has no edges, so |E| = |V| 1.
- Suppose *G* has more than one vertex.

Let v be an arbitrary leaf (vertex of degree 1).

Delete v and its incident edge from G to get a subgraph G'.

For any vertices u and w in G', there is a *path* from u to w in G. This path cannot pass through v (because deg(v) = 1), so it is also a path in G'. Thus, G' is connected.

G' has |V| - 1 vertices.

Thus, the inductive hypothesis implies that G' has |E| - 2 edges.

Simple algebra now implies that |E| = |V| - 1.