
EECE 320 Graphs and Trees Examples

EECE 320: Discrete Structures & Algorithms
Graphs and Trees

Some examples with complete solutions

1. Euler’s Theorem states that for any planar graph G = (V,E) with n vertices, e edges and
f faces, n− e+ f = 2. Prove using the notion of a dual graph.

Proof: Let G∗ be the dual of a graph G. G has f faces and its dual has a vertex for each face
in G therefore the number of vertices in G∗ is f .

Let T be some spanning tree for G. G− T is the graph with the same vertex set as G but
with only those edges that are in G but not in the spanning tree T . Every edge in G lies at the
boundary of two faces; hence, every edge in G− T is at the boundary of two faces. Consider
the graph T ∗ that includes those edges in G∗ that correspond to those edges in G − T . In
other words, if e is an edge in G − T and e separates faces Fi and Fj in G, then T ∗ includes
the edge in G∗ that connects the vertices in G∗ corresponding to faces Fi and Fj .

Since T is a tree, it contains no cycles; therefore there is an edge in G− T corresponding
to each face in G. Thus T ∗ has an edge for each vertex in G∗. Then:

(a) T ∗ does not contain a cycle. Why? Given any cycle in T ∗ we can draw a cycle on the
faces of G that participate in the cycle. This cycle must partition the vertices of G into
two non-empty sets and only crosses the edges in G − T . This implies that T has more
than one connected component, which is possible only if T is not a spanning tree. This
contradicts the fact that T is spanning and therefore T ∗ contains no cycles.

(b) T ∗ is a spanning tree. Why? Suppose T ∗ does not connect all the faces. Let Fi and Fj

be two faces that are not connected in T ∗. This implies that T must include a cycle
separating Fi from Fj , and therefore cannot be a tree. This contradicts the fact that T is
a spanning tree.

Because T ∗ is a spanning tree, we know that f = eT ∗ + 1 (f is the number of vertices in
the tree T ∗ and eT ∗ is the number of edges in T ∗). Further, we know that n = eT + 1 because
T is a spanning tree for g and eT is the number of edges in the spanning tree T .

Combining these two equations:

n+ f = eT + eT ∗ + 2.

But eT + eT ∗ = e because T ∗ contains an edge for every edge in G− T . We conclude that

n− e+ f = 2,

which completes the proof of Euler’s Theorem. �
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2. If G is a simple planar graph with n > 2 vertices then prove that (a) G has a vertex of
degree at most 5, and (b) G has at most 3n− 6 edges.

Solution. This question will rely on Euler’s Theorem. It is also useful to remember that a
simple graph is a graph where there is at most one edge between every pair of vertices.

Proof: In any graph, the degree sum is 2e. If we suppose that all vertices have degree ≥ 6
then the degree sum is at least 6n. As a result, we must have

6n ≤ 2e =⇒ 3n ≤ e. (1)

Since G is a simple graph, every face must have at least three edges (the smallest closed
face is a triangle). Counting the number of edges in G by counting the number of edges per
face, and noting that each edge belongs to two faces, we can obtain the inequality

3f/2 ≤ e =⇒ 3f ≤ 2e. (2)

Using Euler’s Theorem, we know that n− e+ f = 2 or that

3n− 3e+ 3f = 6. (3)

Using (1) and (2) in (3), we obtain the inequality

e− 3e+ 2e ≥ 6 =⇒ 0 ≥ 6,

which is clearly false. Therefore it is not possible that all vertices of G have degree ≥ 6.

From (3), we also infer that 3n − 6 = 3e − 3f . Using (2), we can write the following
equality: 3f = 2e − δ for some δ ≥ 0. That allows us to conclude that 3n − 6 = e + δ =⇒
e = 3n− 6− δ =⇒ e ≤ 3n− 6. �
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3. Prove that every planar graph G can be 6-coloured.

Proof: We will consider a proof by induction.

Base case: If G consists of 6 edges or fewer then the result holds trivially.

Induction step: Let us suppose that we can colour a planar graph with n vertices using six
colours. We need to show that a planar graph with n + 1 vertices can be coloured with six
colours. Every planar graph has at least one vertex with degree at most 5. Let v be a vertex
in G with degree at most 5. Let G − {v} be the graph obtained by deleting the vertex v and
the edges incident on v. Now, G−{v} is a planar graph with n vertices and has a 6-colouring
(by the induction hypothesis). Consider some colouring of G− {v} with at most 6 colours. If
we include v and the edges associated with v to recreate G then v has at most 5 neighbours;
v’s neighbours use at most 5 colours so we can always colour v using the remaining colour to
obtain a valid 6-colouring of G. �
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4. A graph G is 2-colourable iff it contains no odd length cycle.

Proof: (a) G is 2-colourable =⇒ G contains no odd length cycle. Assume thatG is 2-colourable
and consider some 2-colouring of G. Consider an arbitrary cycle of successive vertices
v1, v2, . . . , vk, v1. The vertices vi must be one colour for all even i and the other colour
for odd i. Since v1 and vk must have different colours, k must be even. Thus any cycle
must be of even length.

(b) G contains no odd length cycle =⇒ G is 2-colourable.
Let us consider a spanning tree T ofG. A 2-colouring of a tree can be defined by selecting
any fixed vertex v, and colouring a vertex one colour if the (unique) path to it from v
has odd length, and colouring it with the other colour if the path has even length.
To verify that adjacent vertices in the tree get different colours, let e ::= xy be an edge
in the tree. There is a unique path from v to x. If this path traverses e, it must consist
of a path from v to y followed by the e traversal to x. If this path does not traverse e,
then it can be extended to a path to y by adding a final traversal of e. In either case, the
paths to these vertices from v differ by a single traversal of e, and so the lengths of the
paths differ by 1; in particular, one is of odd length and the other is of even length, so x
and y are differently-coloured.
Let xy be an edge not in T , and consider the unique paths from v to x and from v to y
in T . Exactly one of these two paths must have odd length; otherwise, these two paths
together with the edge xy would form an odd length cycle. But this means x and y are
coloured differently.

�
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5. (The Marriage Theorem) Let G be a bipartite graph with bipartition X and Y . Then
there is a maximal matching from X to Y if and only if Hall’s condition is satisfied:
|N(A)| ≥ |A| for all subsets A of X. Here N(A) denotes the set of neighbours of the
vertices in A.

Proof: The necessity is obvious. The sufficient part can be shown using induction. For sim-
plicity of exposition we will assume that X is a set of n boys and Y is a set of n girls.

The case of n = 1 and a single pair liking each other requires a mere technicality to arrange
a match. Assume we have already established the theorem for all cases when |X| = k and
|Y | = k with k < n. For the case of n girls and boys, the marriage condition may be satisfied
with room to spare (each of the inequalities is strict) or just barely.

In the first case, there is enough room for the first girl to marry whomever she likes; Hall’s
condition will still be satisfied for the remaining (n− 1) girls and (n− 1) boys. Indeed, every
0 < r < n girls like more than r boys. One of those boys may have been the one who married
the first girl - but without whom there are still at least r boys. So, after marrying off any
eligible pair we shall be left with (n− 1) girls and boys for whom the marriage condition still
holds and, by the inductive hypothesis, a complete match is possible.

In the second case, there are r < n girls who like exactly r boys. By the inductive hy-
pothesis, a complete match exists for these r girls so they can be married to the r boys they
like. Consider any s of the remaining n − r girls. The r married girls plus these s girls must
like at least r + s boys as assured by Hall’s condition. Since the r married girls do not like
boys other than the r they married, the s girls must like s boys other than the married boys.
Hence the remaining n− r girls satisfy the marriage condition with the unmarried boys; and
so a complete match is possible for the remaining girls with the remaining boys, providing a
complete match for all the girls. �
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6. An Eüler path is a path that uses every edge of a graph, and uses each edge exactly once.
An Eüler circuit is an Eüler path that is a circuit, i.e., the starting and ending vertex are
the same. Prove that a connected graph has an Eüler path (that is not a circuit) if and
only if it has exactly two vertices with odd degree. Also prove that a connected graph
has an Eüler circuit if and only if all vertices have even degree.

We will prove that the conditions suffice for the existence of an Eüler path and an Eüler
circuit respectively. It is easy to see that they are necessary (left as an exercise).

Proof: We shall use prove the result using induction on |E|, the number of edges in the graph.

Base case. When |E| = 1, it is trivial to see that the statement is true (of course, we do not
have Eüler circuit in this case).

Induction step. Now assume the statement is true for |E| ≤ n. In other words, when
|E| ≤ n, if G has exactly two vertices with odd degree, then G has an Eüler circuit; If all
vertices of G have even degree then it has an Eüler circuit. We shall show that the above
statement is also valid for |E| = n+ 1.

First consider the case that all vertices of G have even degree. Select a vertex x and edge e
that connects x with y. If we delete the edge e, we get a new graph Ĝ. We claim that the new
graph has to be connected. If not, then x and y will be in two separated graphs respectively.
Say x is in a connected graph G̃. Note that x is the only vertex with odd degree in G̃. Thus
the sum of degrees of all vertices in G̃ is an odd number. This contradicts that fact that the
degree sum of a graph is always even. Thus Ĝ has to be connected. Since Ĝ is connected,
|Ê| = n, and has exactly two vertices x and y with odd degree, by induction, there exists an
Eüler path P in Ĝ, which must have x and y as ending vertices. Now add the edge from y to
x to the path P and we obtain an Eüler circuit in G.

Now consider the case that G has exactly two vertices, say x and y, with odd degree. First
assume that x and y are connected by an edge e. After deleting e, we get a new graph Ĝ with
|Ê| = n and all vertices have even degree. But Ĝ could be either connected or disconnected.
If Ĝ is connected, then we have an Eüler circuit in Ĝ. Adding the edge e to the Eüler circuit,
we get an Eüler path in G from x to y. If Ĝ has two components, say G1 and G2 then all
vertices in both G1 and G2 have even degree and |Ei| ≤ n, i = 1, 2. As a result, there exist
Eüler circuits Ci in Gi respectively. Now adding the edge e to C1 and C2, we get an Eüler
path in G from x to y.

If there is no edge connecting x and y, then consider an edge e that connects x to another
vertex z. Deleting e, we get a new graph Ĝ that has exactly two vertices, z and y, of odd
degree. If Ĝ is connected, then by induction, there exists an Eüler path in Ĝ connecting y and
z. By adding e, we get an Eüler path from y to x. But Ĝ could be disconnected. In such a case,
x and z are necessarily in different components G1 and G2, respectively (otherwise, Ĝ will be
connected). y can only be in the component G2 with z else we would have a contradiction
to the fact that the degree sum is even. Now all vertices of G1 have even degree and G2 has
exactly two vertices, y and z, with odd degree. By induction, we have an Eüler circuit C1 in
G1 and an Eüler path C2 in G2 from z to y. Now connect C1 and C2 by e: we get an Eüler
path from x to y. �
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