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Fourier series representation of periodic
signals – Chapter 32

We have seen that a signal can generally be
represented as a linear combination of shifted
impulse (or sample) functions.

We will show that a signal can also
be represented as a linear combination
of complex exponential functions, provided
certain conditions are satisfied.

Why is this useful? Section 3.2

Reason is due to this important fact: The
output of an LTI system due to a complex
exponential input is the same complex
exponential multiplied by a (possibly complex)
gain factor.

We say that complex exponentials are
2These slides are based on lecture notes of Professors L.

Lampe, C. Leung, and R. Schober
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eigenfunctions of LTI systems; the gain
factors are termed eigenvalues. (cf.
eigenvectors and eigenvalues of a matrix)

We now prove the following.

Continuous-time: If x(t) = est is input to a
LTI system with impulse response h(t), the
output y(t) is

y(t) = H(s)est

where

H(s) =

∫ ∞

−∞
h(τ) e−sτ dτ

Proof:
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Example:
Suppose y(t) = x(t− 1) and x(t) = ej2πt.

Example:
Suppose y(t) = x(t−1) and x(t) = cos 2πt+
cos 3πt.
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Discrete-time: If x[n] = zn is input to a
LTI system with impulse response h[n], the
output y[n] is

y[n] = H(z)zn

where

H(z) =
∞
∑

k=−∞

h[k] z−k

Proof:
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Fourier series representation of CT
periodic signals – Section 3.3

Let x(t) be a periodic signal with fundamental
period T . Then if certain conditions
(Dirichlet, pp. 197-200) are satisfied, we can
represent x(t) as a Fourier series (FS) (an
infinite sum of complex exponentials):

x(t) =
∞
∑

k=−∞

ak ejk(
2π
T )t

where the (possibly complex) Fourier
coefficients {ak} are given by

ak =
1

T

∫ T
2

−T
2

x(t) e−jk(2πT )t dt,

k = 0,±1,±2, . . .

The above equations are referred to as the
synthesis and analysis equations respectively.
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Section 3.4 provides a good discussion of the
convergence of the FS representation.

Notes:

1. Using Euler’s relationship, we can also
express the FS representation as an infinite
sum of sine and cosine terms.

2. Given x(t), we can determine {ak}
∞
k=−∞;

conversely, we can reconstruct x(t) from
{ak}

∞
k=−∞.

{ak}
∞
k=−∞ give the frequency-domain

description of the signal and are called its
spectral coefficients.

3. A periodic signal x(t) of fundamental
period T has components at frequencies
0,±2π

T ,±4π
T , . . ., i.e. at multiples of the

fundamental frequency ω0 =
2π
T or f0 =

1
T .
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The component at freq nf0 is called the
nth harmonic .

4. Conjugate symmetry property: If x(t) is
real, then a−k = a∗k.

Proof:

As a result,

|a−k| = |a∗k| = |ak|

and ∠a−k = ∠a∗k = −∠ak .
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Thus, when x(t) is real, the amplitudes
of the spectral coefficients have even
symmetry whereas their phases have odd
symmetry .

Example: Periodic square wave shown below.

1

T10T1– T
2---

x t( )

T
2---–

tTT–

Periodic square wave

We would like to determine its Fourier or
spectral coefficients {ak}

∞
k=−∞.

SM 77



EECE 359 - Signals and Communications: Part 1 Spring 2014

Recall that

ak =
1

T

∫ T
2

−T
2

x(t) e−jk(2πT )t dt,k = 0,±1,±2, . . .

In this case, we have

ak =
1

T

∫ T1

−T1

e−jk(2πT )t dt

= −
1

jk2π
e−jk(2πT )t

]T1

−T1

=
2

k2π

[

ejk(
2π
T )T1 − e−jk(2πT )T1

2j

]

︸ ︷︷ ︸

sin k(2πT )T1

=
sin k

(
2π
T

)

T1

kπ

=
sin k

(
2π
T

)

T1

kπ2T1
T

×
2T1

T

=
2T1

T
sinc

(
2kT1

T

)
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As expected, the amplitudes of the FS
coefficients have even symmetry; in this case,
the phases are 0.

e.g. T1 = T/4

Then, the average value is

a0 =
1

2

and

ak =
1

2
sinc

(
k

2

)

=
1

2

sin πk/2

πk/2

=
sin πk/2

πk
.

k 1 2 3 4 5 6 7
ak

1
π 0 − 1

3π 0 1
5π 0 − 1

7π
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Properties of CT Fourier series –
Section 3.5

See Table 3.1, p. 206 for a list of CTFS
properties. We will look at a few of the
more commonly used ones here. Most of
these properties can also be obtained from
our future study of CT Fourier transform.

Notation: The pairing of a periodic signal
x(t) and its FS coefficients ak is represented
by

x(t)
FS
←→ ak

1. Linearity – Section 3.5.1
Let x(t) and y(t) be two periodic

signal with period T and x(t)
FS
←→ ak,

y(t)
FS
←→ bk.

Then,

z(t) = Ax(t) +By(t)
FS
←→ ck = Aak +Bbk .
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Proof:

2. Time shift – Section 3.5.2
If x(t)

FS
←→ ak, then

x(t− t0)
FS
←→ e−jk(2πT )t0 ak.

As a result, when a periodic signal is
shifted in time, the magnitudes of its FS
coefficients are unchanged.

Proof:
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3. Time reversal – Section 3.5.3
If x(t)

FS
←→ ak, then x(−t)

FS
←→ a−k.

As a result, if x(t) is even, i.e. x(−t) =
x(t), then a−k = ak, i.e. the FS
coefficients are also even.

Moreover, if x(t) is odd, i.e. x(−t) =
−x(t), then a−k = −ak, i.e. the FS
coefficients are also odd.

Proof:

4. Time Scaling – Section 3.5.4

If x(t) =
∑∞

k=−∞ ak ejk(
2π
T )t,

then x(αt) =
∑∞

k=−∞ ak ejk(α
2π
T )t.
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Note that each of the “tones” in x(t) are
simply compressed in time by a factor of α.
Proof:

5. Multiplication – Section 3.5.5
If x(t) and y(t) are periodic with a common
period T and FS coefficients {ak} and {bk}
respectively, then

x(t)y(t)
FS
←→ hk =

∞
∑

l=−∞

albk−l.

Note that the RHS is the DT convolution
of the sequences representing the FS
coefficients of x(t) and y(t).
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Proof:

6. Conjugation – Section 3.5.6

If x(t)
FS
←→ ak, then x∗(t)

FS
←→ a∗−k.

The conjugate symmetry property of the
CTFS we saw previously follows easily from
the above conjugation property.

Proof:

SM 84



EECE 359 - Signals and Communications: Part 1 Spring 2014

7. Parseval’s relation – Section 3.5.7
If x(t)

FS
←→ ak, then

1
T

∫

T |x(t)|2 dt =
∑∞

k=−∞ |ak|
2.

The LHS is the average power of x(t). Also
since

1

T

∫

T

∣
∣
∣ak ejk(

2π
T )t
∣
∣
∣

2
dt =

1

T

∫

T
|ak|

2 dt = |ak|
2,

we see that |ak|
2 is the average power in

the kth harmonic component of x(t).

Parseval’s relation states that the average
power in x(t) is equal to the sum of the
average powers in all its harmonics.

Proof: Problem 3.46.

Fourier series representation of DT
periodic signals – Section 3.6

Let x[n] be a periodic signal with fundamental
period N . Then, as it is shown in the
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textbook, equations (3.94) and (3.95), we
have the following DT Fourier series (DTFS)
pair

x[n] =
∑

k=<N>

ak ejk(
2π
N )n

where the (possibly complex) Fourier
coefficients {ak}, also known as spectral
coefficients, are given by

ak =
1

N

∑

n=<N>

x[n] e−jk(2πN )n

The notation
∑

k=<N> is used to indicate
that the summation is over N consecutive
integers, starting with any value of k.

The above two equations are referred to as the
synthesis and analysis equations respectively.
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There are similarities to as well as differences
from the CT case.

Remarks:

1. The synthesis equation in the DT case
involves a finite sum, in sharp contrast
to the CT case which involves an infinite
sum. Hence, unlike the CT case, there are
no convergence issues in the DT case.

2. Unlike the CT case, ak = ak+N .

3. An important set of DT complex
exponentials is defined as

φk[n] = ejk(
2π
N )n, k = 0,±1,±2, . . .

Note: φk[n] = φk+iN [n].
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4. Fact:

∑

n=<N>

φk[n] =
∑

n=<N>

ejk(
2π
N )n

=

{

N, k = 0,±N,±2N, . . .
0, otherwise.

Proof:
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Example:
Suppose x[n] = sin

(
2π
5

)

n, a signal with
fundamental period 5.

n 0 1 2 3 4 5 6
x[n] 0 0.95 0.59 -0.59 -0.95 0 0.95

n

1

202–6– 4

x n[ ]

64– 8 108–10–

sin
(
2π
5

)

n

Then, we can write

x[n] = 1
2j

[

ej(
2π
5 )n − e−j(2π5 )n

]

.

By direct comparison with the synthesis
equation for the DTFS , we obtain

a1 =
1

2j
, a−1 = −

1

2j
.
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k

1
2j-----

202–6– 4

ak

64– 8 108–10–

 1
2j-----–

Spectral coefficients of sin
(
2π
5

)

n

Example: Consider the following signal with
fundamental period N = 10: in the interval
−5 ≤ n ≤ 5,

x[n] =

{

1, −2 ≤ n ≤ 2
0, otherwise.

n

1

202–6– 4

x n[ ]

64– 8 108–10–

DT periodic square wave
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Then,

ak =
1

10

2
∑

n=−2

e−jk(2π10)n

n -5 -4 -3 -2 -1 0 1 2 3 4

an 0.1 0.0 -0.12 0.0 0.32 0.5 0.32 0.0 -0.12 0.0

k

1

202–6– 4

ak

64– 8 108–10–

 1–

FS coefficients of DT periodic square wave

More generally, suppose that x[n] is periodic with fundamental
period N and in the interval −

⌊

N
2

⌋

≤ n ≤
⌊

N−1
2

⌋

,

x[n] =

{

1, −N1 ≤ n ≤ N1

0, otherwise.

Then, from Example 3.12 on p. 218, we have

ak =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sin[2πk(N1+
1
2)/N]

N sin(πk/N) , k not a multiple ofN

2N1+1
N , k a multiple ofN.

SM 91



EECE 359 - Signals and Communications: Part 1 Spring 2014

Properties of DT Fourier series –
Section 3.7

Although there are important differences such
as the periodicity of the FS coefficients
and the Gibbs phenomenon between the CT
and DT Fourier series, there are also many
similarities.

See Table 3.2 on p. 221 for a list of DTFS
properties. Most of them can be derived in
similar fashion to the CTFS cases.

We next look at a couple of properties to
illustrate the similarities and differences.

Notation: The pairing of a periodic signal
x[n] and its FS coefficients ak is represented
by

x[n]
FS
←→ ak
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1. Multiplication – Section 3.7.1
If x[n] and y[n] are periodic with a common
periodN and FS coefficients {ak} and {bk}
respectively, then

x[n]y[n]
FS
←→ dk =

∑

l=<N>

albk−l.

Note that the RHS is called the DT periodic
convolution of the sequences representing
the FS coefficients of x[n] and y[n].

2. Parseval’s relation – Section 3.7.3
If x[n]

FS
←→ ak, then

1

N

∑

n=<N>

|x[n]|2 =
∑

k=<N>

|ak|
2.

The LHS is the average power of x[n]. Also
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since

1

N

∑

n=<N>

∣
∣
∣ak ejk(

2π
N )n

∣
∣
∣

2
=

1

N

∑

n=<N>

|ak|
2

= |ak|
2 ,

we see that |ak|
2 is the average power in

the kth harmonic component of x[n].

Parseval’s relation states that the average
power in x[n] is equal to the sum of the
average powers in all its harmonics.
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Example:
Determine the DTFS coefficients of the signal
x[n], with a fundamental period of 5, as
shown in the following figure.

n

2

202–6– 4

x n[ ]

64– 8 108–10–

1

To solve this problem, we can make use of
the linearity property of the DTFS by noting
that x[n] = x1[n] + x2[n], where x1[n] and
x2[n] are shown in the following figures.

n

1

202–6– 4

x1 n[ ]

64– 8 108–10–

n

1

202–6– 4

x2 n[ ]

64– 8 108–10–
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If

x[n]
FS
←→ ak, x1[n]

FS
←→ bk, x2[n]

FS
←→ ck

then

ak = bk + ck .

Based on the Example on p. 79 of the notes,
we have

bk =

{
3
5, k a multiple of 5

1
5
sin(3πk/5)
sin(πk/5) , otherwise.

We also note that

ck
∆
=

1

N

∑

n=<N>

x2[n] e
−jk(2πN )n

=
1

5

∑

n=<5>

e−jk(2π5 )n

=

{

1, k a multiple of 5
0, otherwise.
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We thus obtain

ak =

{
8
5, k a multiple of 5

1
5
sin(3πk/5)
sin(πk/5) , otherwise.
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Frequency response of LTI systems –
Section 3.8

Continuous-time: Recall that if x(t) = est is
input to a LTI system with impulse response
h(t), the output y(t) is

y(t) = H(s)est

where

H(s) =

∫ ∞

−∞
h(t) e−st dt.

We will be mostly interested in the special
case when s = jω. The input is then the
complex exponential ejωt and

H(jω) =

∫ ∞

−∞
h(t) e−jωt dt

is called the frequency response of the system.
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Let x(t) be a periodic signal with a Fourier
series (FS) representation

x(t) =
∞
∑

k=−∞

ak ejkω0t, ω0 =
2π

T
.

Then it follows that the output is given by

y(t) =
∞
∑

k=−∞

ak H (jkω0) ejkω0t .

Similar results hold for DT systems.

Discrete-time: Recall that if x[n] = zn is
input to a LTI system with impulse response
h[n], the output y[n] is

y[n] = H(z)zn
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where

H(z) =
∞
∑

n=−∞

h[n] z−n .

We will be mostly interested in the special
case when z = ejω. The input is then the
complex exponential ejωn and

H(ejω) =
∞
∑

n=−∞

h[n] e−jωn

is called the frequency response of the system.

Let x[n] be a periodic signal with a Fourier
series representation

x[n] =
∑

k=<N>

ak ejk(
2π
N )n.

Then it follows that the output is given by

y[n] =
∑

k=<N>

akH
(

ejk(
2π
N )
)

ejk(
2π
N )n.
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LTI

H e jω
( )

ake jk 2π N⁄( )n

k
∑ akH e jk 2π N⁄( )

( )e
 jk 2π N⁄( )n

k
∑

Block diagram illustration of I/O relationship
of LTI system

Example:
Recall that x[n] = cosω0n is periodic only if
2π
ω0

is rational .

Also, cos
(
2π
N

)

n is periodic with fundamental
period N .

Example:

How do cos
(
2π
N

)

n and cos 2
(
2π
N

)

n look like
for N = 5?

n 0 1 2 3 4
cos 2πn

5 1 0.31 –0.81 –0.81 0.31

n 0 1 2 3 4
cos 2

(
2πn
5

)

1 –0.81 0.31 0.31 –0.81
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−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sketch of cos
(
2π
5

)

n

Note:

cos

(
2π

5

)

n =
1

2
ej(

2π
5 )n +

1

2
e−j(2π5 )n.

A direct comparison with the DTFS synthesis
equation shows that

a1 =
1

2
, a−1 (= a5−1) =

1

2
.
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−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sketch of cos 2
(
2π
5

)

n

Note:

cos 2

(
2π

5

)

n =
1

2
ej2(

2π
5 )n +

1

2
e−j2(2π5 )n.

A direct comparison with the DTFS synthesis
equation shows that

a2 =
1

2
, a−2 (= a5−2) =

1

2
.

Consider an LTI system with impulse response
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shown below

h[n] = αn u[n], |α| < 1.

n

1

10
1– 2

h n[ ]

32– 4 5 6 7

α
α2

α3

Then,

H(z)
∆
=

∞
∑

n=−∞

h[n] z−n

=
∞
∑

n=0

αn z−n

=
∞
∑

n=0

(

α z−1
)n

=
1

1− α z−1
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and

H(ejω) = 1
1−α e−jω .

Suppose that x[n] = cos
(
2π
N

)

n is input into
such an LTI system.

Question: How can we determine the output,
y[n]?

Since

cos
2π

N
n =

1

2

(

ej
2π
N n + e−j2πN n

)

,

we can easily write

y[n] = a1H

(

e
j2πN

)

e
j2πN n

+ a−1H

(

e
−j2πN

)

e
−j2πN n

=
1

2

⎡

⎣

⎛

⎝

1

1 − αe
−j2πN

⎞

⎠ e
j2πN n

+

⎛

⎝

1

1 − αe
j2πN

⎞

⎠ e
−j2πN n

⎤

⎦ .
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Letting

rejθ =
1

1− αe−j2πN
,

we have

y[n] = r cos

(
2π

N
n+ θ

)

.

Question: How can we determine r and θ?

rejθ =
1

1− α cos 2π
N + jα sin 2π

N

so that

r =
1

√

(1− 2α cos 2π
N ) + α2

tan θ =
−α sin 2π

N

1− α cos 2π
N

.
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