THE UNIVERSITY OF BRITISH COLUMBIA

Department of Electrical and Computer Engineering

EECE 365: Applied Electronics and Electromechanics

Final Exam / Sample-Practice Exam
Spring 2008
April 23

Topics Covered: Magnetic Circuits, Electromechanical Devices with Motion, DC Motors, AC Power and Transformers, Induction Motors, Synchronous Motors, Brushless DC Motors, Stepper Motors

Surname: \qquad

First Name: \qquad
Student ID: \qquad
Signature: \qquad

- Close notes and books.
- You are allowed to have only a calculator, a pen/pencil, and two double-sided pages of hand-written formulas.
- Show you work including derivations, comments, assumptions, and units wherever appropriate.
- Use back side of each page or ask for additional pages if you need extra space to write your answers.
- Exams suspected of cheating and/or turned in late will not be marked - failed exam.
- You have $\mathbf{9 0}$ minutes to answer the following questions:

Problem	Points	Max.
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

Problem 1:

Consider the magnetic system shown below. The core has permeability and dimensions such that the reluctance of magnetizing path is $\mathfrak{R}_{m}=10^{5} \mathrm{At} / \mathrm{Wb}$. The coil has 100 turns, dc resistance of 2Ω, and is connected to a dc source $V_{d c}=10 \mathrm{~V}$. It is also known that 20% of the total flux Φ produced by the coil leaks into the air.

(a) Draw an equivalent magnetic circuit, show the direction of mmf and the fluxes
(b) Calculate flux linkage λ, and inductance L
(c) Find the rms value of current if the coil is supplied from an ac source $V_{a c}=10 \mathrm{~V}(\mathrm{rms})$ with the frequency $f_{e}=5.093 \mathrm{~Hz}$

Problem 2:

Consider an electro-mechanical device shown in the figure. You can use common approximations as we did in class and assume magnetically-linear core. The air-gap between the core and the plunger is denoted by x (which has units of meters). Assume that total inductance of this device may be approximated as $L(x)=0.15+\frac{5 \cdot 10^{-6}}{x^{2}}$ H , and the dc resistance r is 20Ω.

(a) Sketch the equivalent magnetic circuit and label all elements
(b) Sketch the equivalent electric circuit and label all elements
(c) Express the electromagnetic force $f_{e}\left(x, I_{d c}\right)$
(d) What value of dc voltage $V_{d c}$ and dc current $I_{d c}$ should be applied to the coil in order to produce a force of 25 Nm when the plunger has air-gap of 2 mm ?
(e) Calculate the energy stored in the system for part (d)

Problem 3:

Consider a Permanent-Magnet DC motor with the following parameters: rated voltage $V_{t}=240 \mathrm{~V}$; armature resistance $R_{a}=1.2 \Omega$, and friction torque $T_{\text {fric }}=0.5 \mathrm{Nm}=$ const .
(a) When the motor drives a mechanical load of 9.5 Nm it draws a current of 10 A . Calculate the induced armature emf E_{a} and torque constant K_{t}
(b) Assume that mechanical load has increased to $T_{m}=19.5 \mathrm{Nm}$. Calculate the motor speed n in rpm, speed regulation $S R$ in \%, and efficiency η also in \%

Problem 4:

Consider a 115 V series-connected DC motor with the following parameters: armature resistance $R_{a}=1 \Omega$; and field winding resistance $R_{f}=2 \Omega$. The motor is supplied from a dc source $V_{t}=115 \mathrm{~V}$ and is operating under nominal load at speed $n=3000 \mathrm{rpm}$ drawing armature current $I_{a}=5 \mathrm{~A}$.
(a) Draw an equivalent circuit
(b) Calculate the induced back emf, E_{a}
(c) Calculate the torque at zero speed (starting torque), $T_{\text {start }}$

Problem 5:

A $1.5-\mathrm{kVA}, 60-\mathrm{Hz}$, step-up transformer has two windings with $N_{1}=1000$ and $N_{2}=2000$ turns, respectively. The leakage reactances are $X_{1}=2 \Omega, X_{2}=8 \Omega$ (each quantity is referred to its own side), and the magnetizing reactance $X_{m 2}=400 \Omega$ (referred to the secondary side). The core and copper losses can be ignored. Assume 120 V is applied to the primary side:
(a) Calculate the open-circuit primary current $I_{1, o c}$ and the secondary voltage $V_{2, o c}$ (their rms values)
(b) Assume a resistive load $R_{\text {Load }}=40 \Omega$ is connected to the secondary side. Calculate the resulting currents (rms) in each winding. Also calculate the input power-factor angle φ in degrees

Problem 6:

Consider a 60 Hz , 208 V (line-to-line), Y-connected, NEMA Clsass B Squirrel-Cage Induction Motor with the following per-phase parameters: $R_{1}=1 \Omega, R_{2}=1.5 \Omega, X_{1}=X_{2}=3 \Omega$, and $X_{m}=40 \Omega$ (all referred to the stator). The motor is supplied with the nominal (rated) voltage and is driving a mechanical load. The speed of the motor shaft is $n=855 \mathrm{rpm}$. You can neglect core losses and use an approximate equivalent circuit. Recall that $T_{e}=3 \frac{1}{\omega_{s y n}} \cdot\left(I_{2}\right)^{2} \cdot \frac{R_{s}}{s}$. Determine the following:
(a) Number of poles \boldsymbol{P} and slip \boldsymbol{s}
(b) Input stator current I_{1}, power factor PF, and total three-phase input power $P_{\text {in }}$
(c) Developed electromagnetic torque T_{e}
(d) Assume the friction torque is 5% of the developed torque T_{e}. Calculate the useful mechanical load torque T_{m} and the motor efficiency η in \%

Problem 7:

Consider a 3-phase, 60Hz, 208V (line-to-line) 14-pole Permanent Magnet Round-Rotor Synchronous Motor with the following parameters: per-phase stator resistance and synchronous reactance are $R_{a}=1 \Omega$ and $X_{S}=10 \Omega$, respectively. Assume that the motor outputs mechanical power $P_{m}=1676 \mathrm{~W}$ and power factor is one.
(a) Sketch an equivalent electric circuit (per-phase)
(b) Calculate the motor shaft is n in rpm, induced voltage E_{f}, and the rotor angle δ in degrees
(c) Assume mechanical rotational losses $P_{\text {mech_loss }}=50 \mathrm{~W}$, calculate the efficiency η

Problem 8:

(a) Consider a 2-phase PM Stepper Motor shown here. The rotor initial position is as shown corresponds to the phase bs energized.
Sketch the sequence of currents $i_{a s}$ and $i_{b s}$ to drive this motor at half-step in CW direction assuming phase \boldsymbol{b} is energized first to positive value.

(b) Assume a standard (one phase energized at a time) full-step operation with duration of current pulses $T_{\text {step }}=1 / f_{\text {step }}=0.01 \mathrm{sec}$. Calculate rotor mechanical speed n in rpm
(c) List all classes/types of stepper motors that we discussed in class:
(d) List some of the factors that limit the stepping rate (or speed) at which a given stepper motor can operate: We discussed this in class and you have observed that in Lab-5.

Problem 9:

Consider a single-stack stepper motor shown below. Complete the following table:

2pts	Stator tooth pitch	
2pts	Rotor tooth pitch	
3pts	Step length	
3pts	Number of steps per revolution (Resolution)	
3pts	Assume sequence of pulses as B - C - D - A, determine the direction of rotation (CW or CCW)	
3pts	Assume you have a 4-phase pulse generator to supply this motor. The generator produces 12 pulses per second per phase (48 pulses per second total). What is the motor speed in rpm?	

