THE UNIVERSITY OF BRITISH COLUMBIA

Department of Electrical and Computer Engineering

ELEC 343: Electromechanics

Practice Mid-term Exam for Spring 2020

Topics Covered: Magnetic Circuits, Electromechanical Devices with Motion, and DC Motors

Surname:		
First Name:	 	
Student ID:		
Signature:		

- Close notes and books.
- You are allowed to have only a **calculator** and a **pen/pencil**.
- Show you work including **derivations**, **comments**, **assumptions**, and **units** wherever appropriate.
- Use back side of each page or ask for additional pages if you need extra space to write your answers.
- Exams suspected of cheating and/or turned in late will not be marked **failed exam**.
- You have **60** minutes to answer the following questions:

Problem	Points	Max.
1		20
2		20
3		20
4		20
5		20
Total		100

Problem 1 (20pts):

Consider the magnetic system shown below. The core and air-gap x have dimensions and permeability such that the reluctance of the combined magnetizing path is $\Re_m = \Re_c + 2\Re_x = 10^5 At / Wb$. The coil has 100 turns, dc resistance $r = 2\Omega$, and is connected to a dc source $V_{dc} = 20V$. It is also known that 20% of the total flux Φ produced by the coil leaks into the air (remember - flux leakage!).

- (a) (3pts) Draw an equivalent **magnetic** circuit, show all reluctances, the direction of mmf and all fluxes
- (b) (3pts) Draw an equivalent **electric** circuit, show the direction of current *I* and voltage *V* (assuming a steady state and a **dc** voltage)
- (c) (6pts) Calculate the coil inductance L and flux linkage λ
- (d) (7pts) Assume that the coil is supplied from an **ac** source $V_{ac} = 42.5 V(rms)$ with the frequency $\omega = 30 rad / sec$. Find the rms value of current I_{ac}
- (e) (5pts) How does the electromagnetic force f_e and its direction in particular changes with the ac current I_{ac} ?

Problem 2 (20pts):

Assume an electromechanical system with one electrical and one mechanical inputs. The system may be assumed **magnetically linear** (similar to a solenoid). The system's state is shown in the $\lambda - i$ figure below, wherein the system can move from point A to point B, and from point A to point C, respectively. Using the numerical values given on this figure, <u>calculate the change in</u> W_f , W_c , W_e , and W_m for the two transitions. In other words, complete the Table given below. Be sure to include the units. Remember, according to our convention, positive sign (value) of W_e and W_m means into the system.

Transition	From A to B	From A to C
(4pts) Change in coupling field energy, ΔW_f		
(4pts) Change in co-energy, ΔW_c		
(4pts) Change in electrical input, ΔW_e		
(4pts) Change in mechanical input, ΔW_m		
(3pts) The energy was taken from (and how much)		
(3pts) The energy was supplied to (and how much)		

Problem 3 (20pts):

Assume that on your electric bike you have a **Permanent-Magnet DC Machine** with the armature resistance $R_a = 0.2 \Omega$. When the motor is connected to a 12-V battery it draws the armature current $I_a = 0.5$ A and the shaft speed is n = 1000 rpm **CCW** at no load. The battery voltage and friction torque can be assumed constant. (a) (10pts) Calculate the torque constant K_t and the friction torque T_{fric}

(b) (10pts) Assume that you are going downhill at a constant speed and using regenerative braking to charge the battery. Calculate the external mechanical torque T_m required to produce the charging current of 10A. In what direction, **CW** or **CCW**, should this torque be applied? What is the resulting shaft speed n in **rpm** and efficiency of the energy recovery $\eta(\%)$?

Problem 4 (20pts):

A 24V battery-operated **electric drill** has a **Series DC Motor** with the armature resistance $R_a = 0.4\Omega$; and field winding resistance $R_f = 0.6\Omega$. When the drill spins by itself (not drilling anything, just working against the friction of the gearbox, T_{fric}) it draws current $I_a = 1$ A and the shaft speed is n = 1000 rpm.

- (a) (5pts) Draw an equivalent circuit and label all elements. Find the friction torque T_{fric}
- (b) (5pts) To start drilling an aluminum plate the motor needs to develop initial torque of 100 N*m. Calculate the torque at zero speed (**starting torque**) that this drill can develop, T_{start} . Conclude whether or not this drill can be used for this job?
- (c) (5pts) During the nominal drilling the mechanical torque is only $T_m = 10 \text{ N*m.}$ Assume friction torque $T_{fric} = const.$ (same what you found in part (b)). Determine the current I_a and electric power P_{in} drawn from the 24V battery.
- (d) (5pts) For continuous nominal drilling operation, the motor has to have speed of at least 100 rpm for the cooling fan to dissipate the heat, P_{loss} . Calculate the motor speed *n* in rpm, P_{loss} and efficiency $\eta(\%)$? Conclude whether or not this drill would have a sufficient cooling to work continuously?

Problem 5 (20pts):

Assume a PM DC motor is driven by a PWM converter shown below. The motor shaft is connected to a constant speed mechanical system (load) with $\omega_r = 10 r/s$. The motor parameters are $k_v = 0.5 Vs/r$ and $r_a = 1\Omega$. The converter is supplied form a 10 V dc source. Initially, in **Mode 1**, the duty cycle d = 0.6 (60% on and 40% off). The corresponding voltage and current waveforms are depicted on the figure below (first interval), wherein the average values of the voltage $\bar{v}_a = 6V$ and current $\bar{i}_a = 1A$ are also shown. Assume that the duty cycle has

changed to 0.4 (40% on and 60 off), as shown on the figure. This is a new steady-state operation in **Mode 2**:

(a) (5pts): Determine whether machine is **Motoring** or **Generating** in each **Mode?** and circle appropriate (b) (5pts): Find the value of the average voltage \bar{v}_a for the **Mode 2** and show it on the figure (c) (5pts): Sketch the steady-state waveform of the current \bar{i}_a in Mode 2 and find/show its average value (d) (5pts): The diode D1 has been removed. How would that change the operation when d = 0.6 and when d = 0.4?

