
EECE 442 Term Project Report

1

Abstract - This paper addresses the problem that arises with a typical
file sharing service. It gives insight on an alternative method of
authentication which uses a combination of fingerprint
authentication and SMS messaging. An adversary model was created
to show possible methods of attack. Security was evaluated based on
this model, ensuring our design has sufficient countermeasures to
defend against possible attacks outlined in the adversary model.
Control groups were used to test the overall usability of our design
over a period of 2 weeks and were asked to test different features. In
our group, we split the implementation task into three parts:
encryption / decryption (Bryan), server-sided code (Andrew) and
client-sided code (David).

I. INTRODUCTION
ormally, secure file sharing is done by first establishing a
shared session key, encrypting the file with this key, and

transferring the encrypted file. However, this can get very
cumbersome when the file needs to be sent to multiple people.
This problem is solved with a file authorization system. A file
authorization system allows for a user to securely share files to
others. However, there are some drawbacks that we wish to
address that are present in current file authorization systems. One
of the biggest motivations for this project is the fact that all file
authorization systems that we have researched have used a
username and password pair for authentication. This is a major
flaw as people often choose weak passwords or reuse passwords.
Secondly, file authorizers are often impractical for large files.
For most users, uploading a large file to a server is often
restrictive due to constrained internet upload bandwidth. This is
an even bigger problem when focusing on mobile applications.
Mobile users are plagued with data restrictions and suffer from
slower upload speeds compared to desktop computers. We wish
to address this problem as well as the username and password
issue in our design of a secure file authorizer.
 There has been similar work done on file authorizers which
emphasizes the usability of a fingerprint as an extra security layer
with promising results [1]. However, the paper still utilizes a
username and password pair for authentication, an issue we hope
to solve with our design. Also, there is no mention of any security
features such as protocols or encryption methods, which must be
addressed if we are to make the system secure.

We begin by designing a system that uses SMS/push

notifications (something you have) and fingerprinting
(something you are) as an alternative to logging in using a
username and password. This approach prevents weak
passwords from being guessed. Optionally, we can increase
usability by reading the text messages sent by this check.
Fingerprinting itself is proven to be more usable than entering a
username and password [1]. Instead of keeping files on the server
itself, which can reduce usability as well as increase risk if the
database were ever to be compromised, we instead keep a key
pair of a hash of the encrypted file as well as the key that decrypts
the encrypted file. Once the user is authenticated, they can
choose to either add a hash file key pair or request a key from
someone else. After receiving a key request, the key authorizer
then authorizes themselves using the same authorization method
as the requester. Once this is done, the key authorizer can choose
to accept or deny the request by the key requester.

To evaluate our design, we have established a control group
to test our product. Testing was done on a weekly basis. This was
done to get insight on the usability of our design as we are trying
to maximize usability without sacrificing security. This design is
deemed successful if the results show that the extra security
checks do not impede a user’s willingness to use the program or
if the user deems such methods as being highly usable and
willing to sacrifice a bit of usability for the added security.

Results were positive in the fact that many preferred the
combination of SMS and fingerprinting as a form of
authorization. However, when compared to services such as
Google drive, many preferred the Google service as they already
had Google accounts.

From these results, we can conclude that although there are
services like Google Drive that provide these services on the
cloud, this service can provide a service that accomplishes cases
that current cloud solutions do not (such as storing large files,
lower risk of storing keys instead of files on cloud, and factoring
out weak passwords).

To evaluate the security of our design, we first developed an
adversary model. The model highlights what sort of capabilities
an attacker would have when attempting to expose
vulnerabilities. Using the adversary model, we looked at each
section of our design, and performed an analysis on whether the
attacker can compromise the system through that specific

File Authorization with SMS and Fingerprint
 December 7, 2016

Andrew Chen, Bryan Major, David Kuo (Team 9)

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada

andrewchenubc@gmail.com, bmajor@live.ca, davidkuo94@gmail.com

N

mailto:andrewchenubc@gmail.com
mailto:bmajor@live.ca

EECE 442 Term Project Report

2

channel using the capabilities provided by the adversary model.
The information we want to protect against is the access of the
file hash with the decryption key that is stored in the system. If
the attacker is unable to get that information, we deem the system
to be secure.

When designing this system, we made sure to follow the
principles of secure design. Defense in depth is followed by
using both a SMS check as well as the fingerprint reader to
authorize the user. This adds an extra layer of security if the other
is somehow compromised. Complete mediation is followed by
ensuring that the user must be authenticated every time he / she
adds or requests for a key pair. Psychological acceptability is
used when considering if fingerprinting / SMS is more usable
than the traditional username and password combination. Open
design is demonstrated by this document.

 Our design consists of 3 main sections, the mobile
application, the server and the actual encryption and decryption
of the file. Our team consists of 3 people, and thus each of us
oversaw a specific part of the design. A table of the work is given
below:

Name Design

Section
Responsibilities

Andrew Server x Storing user information in
database

x Issue and handle SMS
challenge / response

x Exposing HTTPS endpoints
x Sending push notifications to

mobile devices
Bryan Encryption /

Decryption
x Key generation
x Encryption/Decryption

David Client
(Mobile
Application)

x Handling user interaction with
mobile application

x Receive and process push
notification and SMS messages

x Send/Handle HTTPS
requests/responses to/from
server

II. RELATED WORK
There has been a paper written by a UBC student which focuses
on the usability of a fingerprint file authorizer [1]. Our designs
are similar in the fact that both our systems use a fingerprint
sensor as an authentication factor. Also, we are both designing a
way to authorize file access to other people.

There are major differences in our design from the paper
mentioned above. One of the major differences is storage of keys
inside the server instead of the file itself as opposed to storing
the file directly onto the system. Another difference arises
because we built our design around the fact that we want an
authentication method that does not use a username and
password, something that is insecure in practice due to people
oftentimes choosing weak or repeated passwords. Using the
fingerprint scanner was just a result of this goal. Not only that,
we have a second authentication factor through SMS messages.

Lastly, the paper does not do a report on the actual security of
such a file system, only the usability of fingerprinting. We are
developing a secure method and thus all channels of entry are
analyzed based on our adversary model.

There are not many forms of file authorizers available right
now, such as Google Drive. However, Google Drive requires the
use of a Google account. Not only that, it requires the user to
specify other users to share files (in our design this may not be
the case). Finally, once an account is given permission, the
authorizer does not know when the users access the file, there is
no history being kept.

III. ADVERSARY MODEL
Before we analyzed the security of our design, we first
constructed an adversary model that established the objectives
and the capabilities of a possible attacker.

The objective for a possible attacker is to decrypt and access
encrypted files without the permission of the file authorizer. The
adversary aims to retrieve the keys that were used to encrypt the
encrypted files and use the keys to gain unauthorized access to
the files.

We decided that the adversary will have the following initial
capabilities:

1) Access to the mobile device: The attacker will be able to
gain physical access to a user’s mobile device.

2) Access to the encrypted file: The attacker will be able to
obtain a copy of the encrypted file. The encrypted file
contains information such as the user id of the file
authorizer as well as the hash of the file.

During the attack, the attacker will have the following
capabilities:
1) Man-in-the-Middle: The attacker will be able to intercept,

replay, or requests from mobile application to server
2) Eavesdropping communications: The attacker will be

able to view the text messages and push notifications on
the user’s mobile device

3) Alternate communication channel to the server: The
attacker will be able to craft and send HTTPS requests to
the server outside of the mobile application.

4) Swapping the SIM card: The attacker will be able to swap
the SIM card inside the user’s device to change the
registered phone number on the device.

IV. SYSTEM DESIGN
Our system revolves around the aspect of a password-free
authentication system where the server stores a pair containing a
file hash of an encrypted file and the corresponding key.

 Each user has a list of “key pairs” that they have registered.
This system of storing the file hash and key is highly efficient as
the actual sizes of the file hash and the key are not very large.
This would solve the issue of bandwidth restrictions, allowing
for users with slow connections to use this application. Also, this
increases usability for the user since the wait time to upload the
file is decreased significantly. Not only is it efficient for storage,
but it allows for the users to be more flexible in the choosing a
file sharing medium (such as a physical medium (USB), or a fast
sharing method (P2P sharing)).

EECE 442 Term Project Report

3

Instead of a password, we use two factors of authentication,
SMS messages and fingerprint checks. The server sends an SMS
challenge to the user. Only the user with the correct phone
number can get the SMS challenge. Next, the user must
authenticate themselves using the mobile device’s fingerprint
scanner to unlock the device’s unique fingerprint secret which
was generated when the application was first started. Next, the
application sends the fingerprint secret along with the SMS
challenge to the server for authentication. The flowchart of the
whole key authorization process can be seen in Figure 1.

To encrypt, a file is wrapped with its original file name, and a
SHA-256 hash of the file with the original file name as seen in
figure 2. A 128-bit AES key and 128-bit initialization vector (IV)
are generated using the cryptographically strong random number
generator. The key and IV are then used to encrypt the wrapped
file using CBC mode with PKCS5 padding. The IV is then
prepended to the encrypted file. Finally, the User ID is prepended
to the file and can be saved with any file name. To decrypt a file,
an access request is made to the user that corresponds to the user
ID found in the encrypted file. Once the request is granted, the
key is received from the server and the key is used to decrypt the
file and the internal hash is checked. If the hash matches, the file
is saved under the original filename.

The following security principles important when considering
the overall design of this system.

1) Open Design: We have followed Kerckhoff’s Principle in
that we want as much exposure to be able to fix any
possible vulnerabilities that the design may have.

2) Complete Mediation: Complete mediation is important
for our project since we do not want our users to read /
write files that they should not have access to. The
consequences might be the leaking of key pairs. The way
we achieve complete mediation is by enforcing that the
user authenticates itself whenever it does an action.

3) Psychological Acceptability: One of the most important
aspects of the design is to be highly usable. If the
application is not usable enough (i.e. it is too confusing or
too complex), the user will use other methods of file
authorization or even worse, no file authorization at all.
Fingerprinting has been shown to be usable and so is SMS
if we can implement reading of text messages.

4) Defense in Depth: Defense in depth is demonstrated by
the two ways the user must identify themself. If the SMS
is intercepted, we can still rely on fingerprint check and
vice versa.

V. SYSTEM PROTOTYPE

Fig. 3. High Level Design of the System Prototype

A. Cloud Server
We set up a cloud server that is hosted with Amazon Web
Services (AWS) [2]. The cloud server is responsible for
receiving requests from the applications, managing user
accounts and authenticate the user for each user action. We
chose amazon because it is an inclusive platform that contains
all the features we need.

We created HTTPS API endpoints to communicate with the
server using AWS API Gateway. The application can only
communicate with endpoints using HTTP over SSL by
default. We chose this because to not have to worry about
generating our own certificate as well as being highly
integrated with the rest of the AWS services. AWS API
Gateway provided HTTPS endpoints to allow us to securely
communicate with the server without having to worry about
establishing an authentication protocol between the
application and the server.

The server communicates with the client using push
notifications and SMS messages. We used AWS Simple
Notification Service (SNS) to drive the communication from
the server to the client. AWS SNS integrates with Google’s
push notification service, Firebase Cloud Messaging to send
push notifications to the user [3].

Fig. 2. File Wrapper and Encryption Format.

Fig. 1. File encryption and decryption flow diagram

EECE 442 Term Project Report

4

AWS Lambda is a server backend that delegates the other
AWS services (such as storage of keys, sending notifications
and handling endpoints). It features auto load balancing and
metrics, so that a developer can focus on the code rather than
miscellaneous problems.

For simplicity, we chose AWS DynamoDB, a fully managed
NoSQL database service as our main storage method. This
database is used to store keys as well as user data. With
NoSQL, we do not need to worry about what sort of data is
being passed in, it is all being handled by the database itself.

B. Android Application

Fig. 4. Authenticating using SMS and fingerprint.

The Android application is responsible for encrypting and
decrypting the file, receiving messages from the server through
push notifications and SMS, sending requests to the server
through HTTP requests, and authorizing user actions using the
fingerprint scanner.
 The Android application communicates with the server by
sending HTTPS requests to exposed endpoints created with
AWS API Gateway [2]. The application sends requests to the
endpoints whenever it needs to communicate with the server.
 The server sends notifications to the user through push
notifications using Firebase Cloud Messaging (FCM) whenever
the user receives a key or a key request [3]. When the Android
application is first installed and launched, a firebase application
token is generated. Additionally, a secret is generated and
encrypted with a generated key that is stored in Android’s
Keystore System [4]. The secret is encrypted using
“AES/ECB/NoPadding” mode. Since generated secret is 16
bytes in size, which is equivalent to 1 block in AES, no padding
and no block chaining is required. Next, an account is created
using the device’s phone number, unique device identifier, the
application token, and the unencrypted secret. The server sends
push notifications to the application using the unique
application token. The server uses SMS messages to send
challenge codes to the application to authenticate the device for
each action. The fingerprint scanner is used to authenticate the
user and retrieve the generated secret before the application
sends the device authentication code response to the server.

 We are using Android’s native file selector to handle the
selecting of files to encrypt or decrypt [5]. To generate the key
and IV we use the class “SecureRandom”. Files are encrypted by
the “Cipher” class in "AES/CBC/PKCS5Padding" mode.
 The prototype creates several folders on the device while
encrypting and decrypting files. A directory named
“SecureFileShare”, is created in “ExternalStorageDirectory”,
and all other directories are placed inside. Within
“SecureFileShare” directory the app creates an “Encrypted”
directory, “ToDecrypt” directory, and a “Decrypted” directory.
The “Encrypted” and “Decrypted” directories are self-
explanatory while the “ToDecrypt” directory stores encrypted
files for which the user has made key requests. In the
“ToDecrypt” directory the encrypted files are renamed to their
SHA-256 hash so the file can be quickly found when a key is
granted.
 We decided to use the Firebase Cloud Messaging services
because of the convenience in setting up the communication
channels between the application and the server. Firebase Cloud
Messaging simplifies sending push notifications to the
application. Both the token generation and secure
communication channels are handled by Google. We also
decided to use the fingerprint scanner to authorize requests. This
is due to the improvements in usability that the fingerprint
scanner provided [1]. The fingerprint scanner allows the user to
authenticate themselves without having to remember a long and
secure password.

VI. EVALUATION METHODOLOGY

A. Evaluation Methodology
We evaluated our project on two aspects: usability and security.

We evaluated the usability of our design by distributing the
prototype application we have developed to our friends and
family members to test. In total, we had a sample size of 15
people. We first asked each user to encrypt a file of their choice
and to send the file to another user that is testing our application.
The user that received the encrypted file then requested access
from the authorizer. The second test involved providing each
user with an already encrypted file to decrypt. Each user tested
the decryption mechanism of our application by requesting
access from the authorizer. The test period lasted for one week
and we encouraged the testers to use the application at least once
per day. At the end of each day, we followed up with each tester
with a short questionnaire that aimed to assess the convenience
of the password-less system. Following the end of the test period,
we distributed a more detailed questionnaire to the testers to
gather feedback on the overall experience and usability of our
design. After, we reiterate on the design and make improvements
if necessary.

We evaluated the security of our design based on the
capabilities of a possible attacker outlined in our adversary
model.

1) Access to the mobile device: Fingerprint scans are
required for all actions taken on the application so the
attacker cannot impersonate the user.

2) Access to the encrypted file: Given the encrypted file an
attacker could request access to the file; however, since
the phone number of the person requesting a file is shown
to the authorizer, the authorizer can identify bad requests.

EECE 442 Term Project Report

5

The attacker could also try to decrypt the file however
since AES-128 is secure the hacker would have to resort
to a brute force attack which is infeasible.

3) Man-in-the-Middle: Communication between the server
and the application is secured using TLS with certificates
provided by Google and Amazon. Users must pass an
authentication check first before doing any user actions.
For each authentication process, the user must also scan
their fingerprint to unlock the key in the Android
Keystore and use the key to decrypt the encrypted copy
of the generated secret. The challenge responses are then
sent containing a corresponding request number for the
original request, the SMS challenge code, and the
generated secret. This process ensures the attacker cannot
receive data with forged HTTP requests.

4) Eavesdropping on communications: Since all
communication between the server and application is
encrypted using TLS, the attacker cannot gain meaningful
information from eavesdropping on the communication
between the application and the server.

5) Alternative communication channel to the server: Like
Man-in-the-Middle, the attacker cannot retrieve any
valuable data or prompt any actions on the server since
authentication must be done using the physical device of
the user and must bypass the fingerprint scanner of the
device.

6) Swapping the SIM card: The attacker cannot authenticate
properly to the server. If the attacker replaces the SIM
card of the stolen device with their own, the SMS
notification challenge will not pass since the SMS
notification is sent to the phone number of the original
SIM card. If the attacker uses the stolen SIM card with
their own device, the generated secret will not match
since the attacker’s own device does not have the same
secret as the stolen device.

B. Results of the Evaluation
When we did the first round of evaluations, we were surprised
that people thought our app was unusable. Based on the rating
system we gave them, we first asked them if they preferred SMS
and fingerprinting to accounts and got the following results:

Fig. 5. Usability of SMS and Fingerprint (without Auto-SMS read).

 After discussing what made the app unusable, we realized that
typing in the SMS secrets in manually wasn’t feasible since the
user had to constantly swap between the SMS messaging app and
our app. The result of this act was that a lot of time was wasted
during authentication. The users have also expressed their

frustration interpreting the SMS secret (which is an 8-character
alphanumeric password). For the people who did not copy and
paste the message, they often misinterpreted the lower-case letter
“L” with the number ‘1” or the upper case “I”. To address these
user pain points, we implemented a way to read the SMS
messages from the phone as it receives messages. Although this
requires an extra permission check when you use the application
for the first time, it allows for a more streamlined process as the
SMS check would not need any user input to pass. After redoing
the evaluations, we got the following results:

Fig. 6. Usability of SMS and Fingerprint (with Auto-SMS read).

 Next, we asked them to compare this service to the file
authorization service provided by Google. We got the following
results:

Fig. 7 Usability of our design vs Google File Authorization.

C. Discussion of Evaluation Results
After making the changes to the design we found a much
more positive result in regards to usability. The combination
of fingerprint and SMS was found to be superior to the usage
of accounts to log in. This was largely because automatic
SMS reading was added. This result agrees with the paper
focusing on fingerprinting as an authentication tool [1]. We
both conclude that fingerprinting is more usable than typing
in a password every time. This makes sense since our SMS
check does not require any extra work to the user.

This design was deemed to be less usable than simply
clicking a link to Google Drive. This is because in Google
Drive, we do not have to wait for the authorizer to approve
before we can access the file. Although this is a property of
all file authorizers, the users preferred quick access over
security of the file. Google Drive also can make the user wait
for the authorizer to approve first before allowing them to
download. Most people preferred this service since they
already have a Google account memorized. However, the
people who did not have a Google account either thought our

0 2 4 6 8

Not Usable

Less Usable

Same Usability

More Usable

Very Usable

Fingerprint + SMS vs Username +
Password (Before)

0 2 4 6 8

Not Usable
Less Usable

Same Usability
More Usable
Very Usable

Fingerprint + SMS vs Username +
Password (After)

0 2 4 6 8

Not Usable

Less Usable

Same Usability

More Usable

Very Usable

Sharing a File vs Google Drive File
Authorization (with login)

EECE 442 Term Project Report

6

application had the same or slightly better usability than that
of Google Drive.

VII. DISCUSSION

1) Advantages of our Design
Following our adversary model, a user has many advantages
when using our design in comparison to other similar
applications available today. The user can control the access of
their file at an individual level. Google Drive offers this level of
access control as well [6]. However, Google Drive’s offering is
tied directly to a user’s email account. In our design, the access
is tied to a user’s phone number and biometrics. The user can
only send access requests to the file owner by authenticating
themselves using SMS and their fingerprint.

An adversary may steal the file requestor’s device or spoof the
phone number of the file requestor, the fingerprint authentication
process must be done before the request is sent to the file owner.
This way, the file owner can be sure that any requests made to
access the file were done by the owner of the mobile device that
made the request. These features allow the file owner to not
worry about their encrypted files being compromised if they ever
lose their mobile device.
 Additionally, our design does not restrict the user in terms of
file storage medium. Once our design encrypts the file, the owner
can freely choose which medium to use when sharing the
encrypted file. This can be physical media, such as a USB stick,
or online services such as email. The file can be shared publicly
without worry since the file is encrypted. With Google Drive, the
user must first upload their file onto their cloud storage, and then
provide access to the file via a shareable link. The user can then
choose to enforce access control rules when creating the
shareable link. In this case, the user is forced to use Google Drive
as a hosting service.
 Finally, our design requires the user to authenticate their
actions using a combination of an SMS challenge code and an
encrypted, generated secret that is decrypted using fingerprint
authentication. This means the user does not have to worry about
managing and memorizing another user account.

2) Disadvantages of our Design
Our design requires the user to use the mobile application to
encrypt and decrypt the files. This limitation is shared with the
system developed by G. Lam, but not with Google Drive [1].
Additionally, the user’s mobile device must contain a fingerprint
reader to utilize this application. However, this limitation will be
less of a problem as fingerprint sensors become more prevalent
in smartphones.
 There are also disadvantages associated with an account-free
design. Due to the lack of accounts, a user must authenticate
themselves for each action that involves private information.
Therefore, user must authenticate themselves multiple times for
each session. However, a method that we have employed to
combat the issue of SMS challenges is to use automatic SMS
reading. From our evaluation results, we can see that users find
SMS challenges much more usable once automatic SMS reading
is implemented into the design.

Another option to improve the usability of the design is to
compromise complete mediation. If we were to lessen the
mediation of the design the following changes could be done:

1) Only verify phone number with an SMS on account
creation.

2) Implement a session-based secret that is established once
the user has authenticated for the first time

 However, the design change does not protect against a
situation where the user’s phone is compromised with the
application opened.

VIII. CONCLUSION
Our goal was to design a secure method to do file sharing without
the use of accounts. Our design focuses on maximizing usability
while still being secure to attacks. Through our results, we see
that although it might not be as usable to others as a simple
Google Drive link, some people are willing to sacrifice a bit of
usability in exchange for security and non-repudiation. As a
bonus, our design handles cases that are not supported by cloud
services (such as large files and freedom of file sharing medium).
This work is important in the development of a method that
would one day phase out the use of passwords, because
passwords are highly unreliable.
 The current design prototype can be improved with the
following extensions:

1) Cross platform: Currently, the prototype is only
supported on Android. The prototype can be extended
to support the iOS platform

2) Session-based tokens: Implementing session based
tokens will immensely improve usability as the user
will not have to authenticate for each action

3) One-time use files: Currently, the prototype does not
automatically delete the file once the user has finished
using the file. This will improve the security as access
can be controlled up to usage attempts

4) File Names: In addition to the file hash, we can keep the
file name of the file so that the user can easily identify
the file being requested.

REFERENCES
[1] G D Lam, “Evaluating the Usability of an Apple Touch ID-Based Access

Control System” University of British Columbia, April 2015.
[2] “Amazon Web Services (AWS) – Cloud Computing Services,” Amazon

Web Services, Inc. [Online]. Available: https://aws.amazon.com/.
[Accessed: 10-Nov-2016].

[3] “Firebase | App success made simple,” Firebase. [Online]. Available:
https://firebase.google.com/. [Accessed: 10-Nov-2016].

[4] A. System, "Android Keystore System | Android Developers",
Developer.android.com, 2016. [Online]. Available:
https://developer.android.com/training/articles/keystore.html. [Accessed:
02- Dec- 2016].

[5] O. Framework, "Open Files using Storage Access Framework | Android
Developers", Developer.android.com, 2016. [Online]. Available:
https://developer.android.com/guide/topics/providers/document-
provider.html. [Accessed: 02- Dec- 2016].

[6] "Latest Google Drive App Update Lets You Request Access To Files You
Don't Have Access To", Android Police, 2016. [Online]. Available:
http://www.androidpolice.com/2015/10/09/latest-google-drive-app-
update-lets-you-request-access-to-files-you-dont-have-access-to/.
[Accessed: 02- Dec- 2016].

[7] "ChenAndrew/CPEN442-Security-Project", GitHub, 2016. [Online].
Available: https://github.com/ChenAndrew/CPEN442-Security-Project.
[Accessed: 07- Dec- 2016].

[8] "davidk894/cpen442_project", GitHub, 2016. [Online]. Available:
https://github.com/davidk894/cpen442_project. [Accessed: 07- Dec-
2016].

