

Implementation of Two-Factor Authentication with
U2F for Gravitational Teleport

CPEN 442 Partial Project Report

December 11, 2016

Alex Charles (36700128), Jay Dahiya (31135130), Jason Jang (35408129), Bibek Kaur (15093123)
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

Abstract​ - Two-factor authentication is becoming
commonplace in our society for users to securely login.
This has arisen through the utilization of mobile
applications such as Google Authenticator. However,
Google Authenticator has various issues, including
usability drawbacks and vulnerabilities to phishing and
man-in-the-middle attacks. These problems are solved by
the use of Universal Second Factor (U2F). We introduced
2FA with U2F to a security product, Teleport, allowing
users to authenticate with it in place of Google
Authenticator. We refactored their code to handle
different forms of 2FA, and extensively tested our
implementation using their current testing frameworks.
Through U2F support, the overall security and usability of
Teleport has increased. The pull request acceptance is
currently pending, but the U2F implementation has been
reviewed and approved by Gravitational’s CTO. We
expect it to be accepted by the end of 2016.

I. INTRODUCTION

T​wo-factor authentication (2FA) is utilized throughout the
world as a means of confirming a user’s identity. Two-factor
refers to the individual authenticating themselves through two
out of three of the following methods: secrets, possessions,
and biometrics. These are commonly known as something you
know, something you have, and something you are. By
requiring an attacker to authenticate through multiple ways,
2FA can reduce the chance of identity theft or other forms of
online fraud significantly. It is clear that a 2FA system carries
many benefits, and can reduce the chance of a successful
attack [2].

Many systems utilizing 2FA do so at the cost of limited
usability. For example, a user authenticating a credit card
payment may have to sign the receipt, or provide a PIN. The
popular 2FA app Google Authenticator requires users to enter
in a generated 6 digit code, in addition to their username and
password. This reduction of usability, commonly associated

with 2FA, discourages adoption of the increase in security it
provides. The aim to promote ease of use, security, and
standardization among strong authentication devices, led to
the creation of Universal Second Factor (U2F) by Google and
Yubico. U2F is a 2FA system based on hardware tokens and a
challenge-response protocol. The success of the project has
been confirmed by Google, who published a study which
found U2F to be more usable and more secure than one-time
codes.

Currently the FIDO Alliance, a collection of over two
hundred technology companies, promotes and hosts U2F as
their primary means for 2FA. U2F is gradually becoming
commonplace, and today it is supported by a host of
applications, including Dropbox and Github, all major
operating systems, and Google Chrome. Other web browsers
are planning on supporting it in the future, and it is rapidly
being adopted across security-critical areas [3].

We implemented two-factor authentication using the U2F
standard for Gravitational Teleport, an open source, managed
SSH solution for server clusters. Currently, Teleport only
supports two-factor authentication with the Google
Authenticator mobile app. We refactored Teleport’s web
client, command-line client, and server code to allow for
different forms of 2FA. We added U2F as an option for 2FA,
and included simple, usable instructions for the user.

Through extensive unit and end-to-end testing, we are
confident in the correctness of our solution. In our
development of unit tests, we used the testing frameworks and
libraries currently employed by Teleport. On the server side,
we utilized the testing library gocheck, and created a mock
U2F device to aid in unit testing. For the web application, we
wrote tests under the Mocha JavaScript testing framework. We
purchased U2F devices, and conducted end-to-end tests with
these. Finally, we conducted usability testing to ensure our UI
changes were acceptable.

II. EXISTING SYSTEM
Teleport ​allows users to authenticate once and log in to

multiple Linux servers within the cluster. ​The system consists
of the web client, the command-line client, and the server,
which provides the three services - node, proxy and auth. The
web client is written using standard web technologies in
JavaScript, and the command-line client and services are both
written in the Go language.

Each server instance can be configured to provide one or
more of the node, proxy and auth services. The node service
runs on the individual servers in the cluster and provides SSH
access to them. The proxy service, as the name suggests,
accepts connections from the client and routes them to nodes.
It also serves the web interface to browsers. The auth service
is the access control authority and handles authentication and
authorization. Figure 1 illustrates the interactions between the
components of the system.

.

Figure 1: Teleport’s primary components

The four interactions shown in the diagram are as follows:
1. The client connects to the proxy and presents its

certificate.
2. The proxy checks with the auth service to see if the

certificate is valid. If the certificate is invalid or
expired, the proxy will require the client to
authenticate. Once client sends the correct
credentials, the auth service will issue a new
temporary certificate to the client, which the client
can use to connect with.

3. The proxy connects to the node. Additionally, the
proxy also records the session, which it forwards to
the auth service for auditing.

4. The node checks with the auth service to see if the
certificate is valid and whether the user is authorized
to log in.

Figure 1 also shows that the Admin tool, used to
configure the auth service, can only be run on the same
machine that runs the auth service.

Since our implementation covers authentication, we only
modified the clients, the proxy, and auth services.

This system’s stakeholders include Gravitational, their
customers who use Teleport, and indirectly the customers of
the users of the Teleport system who may have their private
data stored on servers which are accessible using Teleport.

Adversary Model

The adversary model for the existing system is as follows.
Objectives

● To gain access to the account of a user in order to
acquire SSH access to the company’s servers.

Initial Capabilities

● Install keyloggers and network traffic loggers on the
users’ computers

● Visually observe the users while they enter the
password and one-time token

Capabilities During the Attack

● Reuse credentials gathered with previously installed
keyloggers and network traffic loggers

● Physical access to the users’ password protected
mobile phones

III. RELATED WORK

Soon after publication of the U2F standard, FIDO
released ​FIDO U2F Implementation Considerations​ , detailing
various points of interest and guidelines, in order to correctly
integrate the standard into a project’s authentication scheme.
This paper directly addresses our project’s goals. Among other
things, it contains information on timing considerations, key
generation, and the U2F tokens. By referring to it throughout
the development, we can be assured that the best practices laid
out by the designers of U2F are followed [4].

Additionally, Google conducted a study on the
usability and security of U2F tokens compared to one-time
passwords (OTP) delivered via SMS or a mobile app and
found that users who use U2F tokens spent on average less
time and made fewer mistakes authenticating than users who
use OTP via SMS or OTP via mobile app. U2F tokens
additionally provide protection against phishing, which OTP is
vulnerable to. They also found that while U2F tokens incur a
one-time cost, the savings in recurring IT support costs related
to two-factor authentication offsets the cost of buying the U2F
tokens. This paper provides further justification of the
necessity of our enhancement[6].

IV. ADVERSARY MODEL

The objectives of the adversary are the same as for the
existing system - to gain SSH access to the company’s servers.
The adversary model for the U2F-based system assumes the
attacker has the following capabilities in addition to the
capabilities assumed by the adversary model of the existing
system.

Initial Capabilities

● Send phishing emails that link to a fake login page set
up by the attacker

● Send phishing emails that instruct users to install
mobile malware

● Exploit mobile security flaws to install mobile
malware on the users’ mobile phones

Capabilities During the Attack

● Steal one-time token codes or the secret key used to
generate the token codes using previously installed
mobile malware

● Steal one-time token codes via direct line of sight,
and by entering the token before the legitimate user
does

V. SYSTEM DESIGN

We implemented U2F authentication using existing
open-source libraries and programs. This is in accordance with
the Teleport project’s philosophy of using off the shelf
security. Not only is using existing security libraries following
the Principle of Open Design, it is also an example of the
Economy of Mechanism, as this reduces the amount of code
we need to write, and therefore the chance of security-critical
bugs being present in our implementation [1].

For the server, we used a U2F server library written in
Go. For the web client, we used an npm port of the official
JavaScript U2F client library, as this integrates more cleanly
with the existing web client code. For the command-line
client, U2F authentication was implemented by calling the
official u2f-host command-line utility, as there is no U2F
client library for Go and the u2f-host utility is supported on all
operating systems supported by Teleport. Because the u2f-host
program is typically installed in locations that can only be
written to by the root user, using it does not diminish the
security of the system as an attacker who already has root
access to the victim’s computer can simply steal the user’s
temporary certificate after the victim logs in.

Teleport uses role-based access control. Because the U2F
system needs to allow partially authenticated users who have
entered the password correctly to get a U2F authentication
challenge and do nothing else, all of the existing roles were
too broad. In following the Principle of Least Privilege, a new
role was created specifically for partially authenticated users
to get the U2F authentication challenge.

U2F requires the server to persist the authentication
challenge between client requests. Each challenge is randomly
generated by the server and expires after five minutes. We
chose to store only the most recently created challenge for
each user, instead of storing all challenges until they expire, as
one of the storage backends that Teleport can use does not
fully support automatically expiring values. In particular,
values that have expired cannot be read, but are also not
cleaned up until an attempt is made to read them. If an attacker
knows the password of a user who utilizes U2F, we have the
choice of either allowing the attacker to perform a denial of
service attack on the user by repeatedly requesting
authentication challenges to overwrite the authentication

challenges for the user, or allowing the attacker to perform a
denial of service attack on the whole system by filling the
authentication server with authentication challenges. We chose
to allow the attacker to perform a denial of service on a single
user rather than the whole system, as this minimizes the
impact of the attack. Furthermore, such denial of service
attacks on a single user can be mitigated by the system
administrator, by resetting the user’s access credentials.

It should be noted that because Teleport is an open source
project, our implementation also follows the principle of Open
Design.

VI. SYSTEM IMPLEMENTATION

We first implemented the server, which has a REST
interface, as it is the common endpoint for both clients.
Testing it does not rely on either client, as it can be done by
manually sending requests using a browser tool such as
Postman, or the curl command-line tool. Initially, we
investigated the flow of data between the various parts of the
server to identify the most appropriate places to call the U2F
server library, the data that needs to be persisted, and the most
appropriate place to store the data. We then implemented data
marshalling and persistence. Challenge and Registration are
the two primary data structures that needed to be stored. Data
marshalling and data persistence in the existing system is done
with JSON encoding and a key-value store. The Challenge
data structure can be encoded in JSON using Go’s built-in
JSON support, but the Registration data structure cannot,
because it contains a public key structure which utilizes
pointers internally. We implemented a marshallable
Registration structure which stores the public key in
DER-encoded PKIX (Public-Key Infrastructure X.509)
format. After data marshalling was implemented, the
Challenge and Registration data structures can be stored in the
database, along with the existing user data.

Once we had working data persistence, we implemented
the four APIs required by U2F - register request, register
response, sign request, and sign response - in this order, as
each API could only be tested after the previous one had been
implemented.

We then implemented the web client, as the web client
has more functionality than the command-line client.
Implementing the web client early allowed us to find potential
design problems in the server API before we write more code
that depends on this API. We made modifications to the
signup page and the login page. In the signup page, we added
an option to allow new users to choose whether they want to
use Google Authenticator or U2F as their second factor. If the
user chooses Google Authenticator, then the signup process
proceeds as before and the user is configured to use Google
Authenticator. If the user chooses U2F, then the new
U2F-based server APIs are used instead, and the user is
configured to use U2F. In the login page, we added a second
login button that allows users who use U2F as their second
factor to log in. We chose to add a second button instead of an

option to minimize the number of clicks required for the user
to log in.

Finally, we implemented the command-line client, which
shares some of the server APIs with the web client. We added
a new command-line option to allow the users to choose U2F
as their second authentication factor. Requiring the second
authentication factor to be specified by the user simplifies the
design of the system, and prevents attackers from learning
which second factor is used by a user whose password they
know.

VII. EVALUATION METHODOLOGY

We evaluated our implementation with manual and
automated testing for functionality, and conducted subjective
evaluations of the user experience. First, the server was tested
by manually calling the APIs using a browser tool or the curl
command-line tool. Once the web client was implemented, we
tested the web client against the server. The command-line
client was also tested against the server after it was
implemented.

To make sure that future changes to the code will not
break the U2F authentication functionality, we added new
tests to the existing test suites for the server and the web client
to test the newly added functionality.

The tests for the server are written in Go using the
gocheck library, which is used by the existing tests for the
server. Because the U2F standard uses a challenge-response
protocol, the server APIs cannot be fully tested by playing
back previously recorded traffic. Our solution to this issue was
to implement a mock U2F device in software, in accordance
with the U2F standard, to create the appropriate responses to
the challenges from the server.

The tests for the web client are written in Javascript using
Mocha and PhantomJS. Since the web client is tested
independently of the server using faked server responses, the
same issue of having to generate proper U2F responses does
not apply, as the server responses for successful or
unsuccessful authentication can be created by the test.

Additionally, the team evaluated the design of our user
interface by trying it ourselves, and asking our friends for
feedback.

Upon conducting end-to-end manual testing for both the
new and existing 2FA methods in the Teleport system, we
found that they both functioned correctly. The existing test
cases and the new test cases for the U2F functionality also
passed. This gave us the confidence that our added feature was
ready to go under review from the Gravitational team.

VIII. DISCUSSION

This project provided us the opportunity to enable
thousands of Teleport users to use U2F, a considerably more
secure, more usable method of two-factor authentication than
Google Authenticator. Moreover, U2F is considerably faster
than Google Authenticator (Figure 2) as it does not require the
time to run a mobile application or copy the key to the login

prompt [5]. Apart from U2F being simple to use, it is also
portable across all operating systems.

Figure 2: Time Spent Authenticating

In addition to the usability concerns previously discussed,

mobile applications bring the distinct disadvantage of sharing
Authenticator offers no built-in protection against phishing or
the large attack surface of smartphones. Additionally, Google
man-in-the-middle attacks. U2F’s physical hardware keys, and
the protocol it utilizes, avoids this problem. This is because
the websites are identified to U2F hardware keys by their
domain name, thus increasing the difficulty to perform
phishing and man-in-the-middle attacks (Figure 3). This is due
to the fact that potential attackers would have to gain control
of the domain name and acquire a SSL certificate for the
domain name in order to interact with the U2F device.
Additionally, U2F detects the cloning of the device through
the use of a device counter. This acts as a fail-safe in the event
that the U2F device’s tamper resistive nature is compromised.
An additional benefit of being hardware based and a two-way
protocol, is U2F’s resistivity to mobile malware and shoulder
surfing.

Figure 3: U2F Protocol

Though it can be argued that U2F devices have an entry
barrier in the form of a cost (starting at approximately $10)
compared to Google Authenticator accessibility as a free
application for smartphones. An argument can be made that
Google Authenticator assumes a user is in possession of a

smartphone, which might not always be the case due to
potential security regulations in companies.

Once we started working on this project, we familiarized
ourselves with U2F and its inner workings by reading the
Universal 2nd Factor (U2F) Overview document.
Additionally, we also found open-source libraries which were
beneficial to us in accordance with the design phase of this
project.

Compared to the existing two-factor authentication
system based on Google Authenticator, our U2F-based system
has some advantages and disadvantages. Because we chose to
store only the last issued challenge of each user to avoid a
possible denial-of-service attack on the entire system using the
credentials of one compromised user, an attacker who knows a
user’s password can perform a denial-of-service on that user
by repeatedly requesting authentication challenges to
overwrite challenges for the legitimate user. In the existing
system, this is not possible, but it is much easier to perform an
exhaustive search of the keyspace of a 6 digit code, than the
keyspace of a digital signature. It can be argued that the
behaviour of our U2F-based system is acceptable, if not better,
because it follows the principle of fail-safe default.

A notable difference between the two 2FA systems is that
in the U2F-based system, an attacker can discover whether a
user exists by bruteforcing the username-password
combination. In the Google Authenticator-based system, the
server would only give a positive response if the username,
password and one-time passcode are all correct. This is a
disadvantage of our U2F-based implementation and it is
difficult to avoid because we would have to issue fake U2F
challenges for nonexistent U2F tokens. Generating fake “key
handles” for the dummy challenges that are indistinguishable
from real key handles is difficult, as different manufactures of
U2F tokens can generate key handles differently and we
would have to analyze the key handles generated by U2F
tokens from different manufacturers. Doing it successfully
while keeping the project open source would also add
complexity to the fake key handle generation algorithm. We
discussed this issue with the Teleport project maintainers and
decided to simply return an error upon receiving an incorrect
username-password combination.

We submitted a pull request once the implementation and
testing phases were completed and we were satisfied with the
result. Our implementation of U2F as a 2FA in Teleport is
currently under code review. The project maintainers from
Gravitational do not have any major concerns about the
functionality of our added 2FA option. They have approved
the security aspects of our implementation, and they will soon
review the user interface changes. U2F 2FA is one of the
milestones of Teleport version 1.5 and we expect the pull
request to be accepted after code review.

IX. CONCLUSION

The benefits of U2F to a business like Gravitational are
evident. Their customers’ confidence in the security of their

system is paramount to their business’s growth and success.
U2F helps protect the confidentiality and integrity of the
system by providing a more usable and more secure form of
two factor authentication.

A possible extension to this project is to merge the mock
U2F device we developed for Teleport into the U2F server
library repository in a separate pull request. The mock U2F
device may be useful for the testing of similar projects.

REFERENCES
[1] E. Kontsevoy et al. (2015). Gravitational - the Private SaaS Company
[online]. Available: ​http://gravitational.com/
[2] B. Krebs, “Citibank Phish Spoofs 2-Factor Authentication,” ​The

Washington Post​ , 11-Jul-2006.
[3] S. Srinivas, D. Balfanz and E. Tiffany, ​Universal 2nd Factor (U2F)

Overview​ , 1st ed. Fido Alliance, 2014, pp. 4-24.
[4] D. Balfanz, “FIDO U2F Implementation Considerations.” FIDO Alliance,
09-Oct-2014.
[5] S. Ehrensvard. (2015). Why Yubikey Wins [online]. Available:
https://www.yubico.com/2015/11/why-yubikey-wins/
[6]J. Lang et al., “Security Keys: Practical Cryptographic Second Factors for
the Modern Web,” Google, tech., 2016.
[7] “U2F - FIDO Universal 2nd Factor Authentication,” ​Yubico​ . [Online].
Available: https://www.yubico.com/about/background/fido/

http://gravitational.com/
https://www.yubico.com/2015/11/why-yubikey-wins/

