
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectures
in Context

Software Architecture
Lecture 2

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

2

Software Architecture: Foundations, Theory, and Practice	

Fundamental Understanding

  Architecture is a set of principal design decisions about a
software system

  Three fundamental understandings of software
architecture
  Every application has an architecture
  Every application has at least one architect
  Architecture is not a phase of development

3

Software Architecture: Foundations, Theory, and Practice	

Wrong View: Architecture as a
Phase

  Treating architecture as a phase denies its
foundational role in software development

  More than “high-level design”
  Architecture is also represented, e.g., by object code,

source code, …

4

Software Architecture: Foundations, Theory, and Practice	

Context of Software Architecture

  Requirements
  Design
  Implementation
  Analysis and Testing
  Evolution
  Development Process

5

Software Architecture: Foundations, Theory, and Practice	

Requirements Analysis

  Traditional SE suggests requirements analysis should
remain unsullied by any consideration for a design

  However, without reference to existing architectures it
becomes difficult to assess practicality, schedules, or
costs
  In building architecture we talk about specific rooms…
  …rather than the abstract concept “means for

providing shelter”
  In engineering new products come from the observation

of existing solution and their limitations

6

Software Architecture: Foundations, Theory, and Practice	

New Perspective on Requirements
Analysis

  Existing designs and architectures provide the solution
vocabulary

  Our understanding of what works now, and how it
works, affects our wants and perceived needs

  The insights from our experiences with existing systems
  helps us imagine what might work and
  enables us to assess development time and costs

   Requirements analysis and consideration of design
must be pursued at the same time

7

Software Architecture: Foundations, Theory, and Practice	

Non-Functional Properties (NFP)

  NFPs are the result of architectural choices
  NFP questions are raised as the result of architectural

choices
  Specification of NFP might require an architectural

framework to even enable their statement
  An architectural framework will be required for

assessment of whether the properties are achievable

8

Software Architecture: Foundations, Theory, and Practice	

The Twin Peaks Model

9

Software Architecture: Foundations, Theory, and Practice	

Design and Architecture

  Design is an activity that pervades software development
  It is an activity that creates part of a system’s architecture
  Typically in the traditional Design Phase decisions concern

  A system’s structure
  Identification of its primary components
  Their interconnections

  Architecture denotes the set of principal design decisions
about a system
  That is more than just structure

10

Software Architecture: Foundations, Theory, and Practice	

Architecture-Centric Design

  Traditional design phase suggests translating the
requirements into algorithms, so a programmer can
implement them

  Architecture-centric design
  stakeholder issues
  decision about use of COTS component
  overarching style and structure
  package and primary class structure
  deployment issues
  post implementation/deployment issues

11

Software Architecture: Foundations, Theory, and Practice	

Design Techniques

  Basic conceptual tools
  Separation of concerns
  Abstraction
  Modularity

  Two illustrative widely adapted strategies
  Object-oriented design
  Domain-specific software architectures (DSSA)

12

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

13

Software Architecture: Foundations, Theory, and Practice	

Object-Oriented Design (OOD)

  Objects
  Main abstraction entity in OOD
  Encapsulations of state with functions for accessing

and manipulating that state

14

Software Architecture: Foundations, Theory, and Practice	

Pros and Cons of OOD

  Pros
  UML modeling notation
  Design patterns

  Cons
  Provides only

 One level of encapsulation (the object)
 One notion of interface
 One type of explicit connector (procedure call)

 Even message passing is realized via procedure calls
  OO programming language might dictate important design

decisions
  OOD assumes a shared address space

15

Software Architecture: Foundations, Theory, and Practice	

DSSA

  Capturing and characterizing the best solutions and best
practices from past projects within a domain

  Production of new applications can focus on the points of
novel variation

  Reuse applicable parts of the architecture and
implementation

  Applicable for product lines
  Recall the Philips Koala example discussed in the

previous lecture

16

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

17

Software Architecture: Foundations, Theory, and Practice	

Implementation

  The objective is to create machine-executable source
code
  That code should be faithful to the architecture

 Alternatively, it may adapt the architecture
 How much adaptation is allowed?
 Architecturally-relevant vs. -unimportant

adaptations
  It must fully develop all outstanding details of the

application

18

Software Architecture: Foundations, Theory, and Practice	

Faithful Implementation

  All of the structural elements found in the architecture
are implemented in the source code

  Source code must not utilize major new computational
elements that have no corresponding elements in the
architecture

  Source code must not contain new connections between
architectural elements that are not found in the
architecture

  Is this realistic?
Overly constraining?
What if we deviate from this?

19

Software Architecture: Foundations, Theory, and Practice	

Unfaithful Implementation

  The implementation does have an architecture
  It is latent, as opposed to what is documented.

  Failure to recognize the distinction between planned and
implemented architecture
  robs one of the ability to reason about the

application’s architecture in the future
  misleads all stakeholders regarding what they believe

they have as opposed to what they really have
  makes any development or evolution strategy that is

based on the documented (but inaccurate)
architecture doomed to failure

20

Software Architecture: Foundations, Theory, and Practice	

Implementation Strategies

  Generative techniques
  e.g. parser generators

  Frameworks
  collections of source code with identified places where

the engineer must “fill in the blanks”
  Middleware

  CORBA, DCOM, RPC, …
  Reuse-based techniques

  COTS, open-source, in-house
  Writing all code manually

21

Software Architecture: Foundations, Theory, and Practice	

How It All
Fits
Together

22

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

23

Software Architecture: Foundations, Theory, and Practice	

Analysis and Testing

  Analysis and testing are activities undertaken to assess
the qualities of an artifact

  The earlier an error is detected and corrected the lower
the aggregate cost

  Rigorous representations are required for analysis, so
precise questions can be asked and answered

24

Software Architecture: Foundations, Theory, and Practice	

Analysis of Architectural Models

  Formal architectural model can be examined for internal
consistency and correctness

  An analysis on a formal model can reveal
  Component mismatch
  Incomplete specifications
  Undesired communication patterns
  Deadlocks
  Security flaws

  It can be used for size and development time
estimations

25

Software Architecture: Foundations, Theory, and Practice	

Analysis of Architectural Models
(cont’d)

  Architectural model
  may be examined for consistency with requirements
  may be used in determining analysis and testing

strategies for source code
  may be used to check if an implementation is faithful

26

Software Architecture: Foundations, Theory, and Practice	

Evolution and Maintenance

  All activities that chronologically follow the release of an
application

  Software will evolve
  Regardless of whether one is using an

architecture-centric development process or not
  The traditional software engineering approach to maintenance

is largely ad hoc
  Risk of architectural decay and overall quality degradation

  Architecture-centric approach
  Sustained focus on an explicit, substantive, modifiable,

faithful architectural model

27

Software Architecture: Foundations, Theory, and Practice	

Architecture-Centric Evolution
Process

  Motivation
  Evaluation or assessment
  Design and choice of approach
  Action

  includes preparation for the next round of adaptation

28

Software Architecture: Foundations, Theory, and Practice	

Summary (1)

  A proper view of software architecture affects every
aspect of the classical software engineering activities

  The requirements activity is a co-equal partner with
design activities

  The design activity is enriched by techniques that exploit
knowledge gained in previous product developments

  The implementation activity
  is centered on creating a faithful implementation of

the architecture
  utilizes a variety of techniques to achieve this in a

cost-effective manner

29

Software Architecture: Foundations, Theory, and Practice	

Summary (2)

  Analysis and testing activities can be focused on and
guided by the architecture

  Evolution activities revolve around the product’s
architecture.

  An equal focus on process and product results from a
proper understanding of the role of software architecture

30

