Architectures
in Context

Software Architecture
Lecture 2

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Software Architecture: Foundations, Theory, and Practice 5

Learning Objectives

e Understand architecture in its relation to project phases
e Distinguish between OOD and S/W architecture

e List implementation techniques for S/W architecture

e Understand role of analysis in architecture

Software Architecture: Foundations, Theory, and Practicr

Fundamental Understanding

e Architecture is a set of principal design decisions about a
software system

e Three fundamental understandings of software
architecture

Every application has an architecture

Every application has at least one architect
Architecture is not a phase of development

Software Architecture: Foundations, Theory, and Practice

Wrong View: Architecture as a
Phase

Treating architecture as a phase denies its
foundational role in software development

More than “high-level design”

Architecture is also represented, e.g., by object code,
source code, ...

Software Architecture: Foundations, Theory, and Practice

Context of Software Architecture

Requirements

Design
Implementation
Analysis and Testing
Evolution
Development Process

Software Architecture: Foundations, Theory, and Pra;g.j

Requirements Analysis

e Traditional SE suggests requirements analysis should
remain unsullied by any consideration for a design

e However, without reference to existing architectures it

becomes difficult to assess practicality, schedules, or
costs

In building architecture we talk about specific rooms...

...rather than the abstract concept "means for
providing shelter”

e In engineering new products come from the observation
of existing solution and their limitations

Software Architecture: Foundations, Theory, and Pra;g.j

New Perspective on Requirements
Analysis

e EXxisting designs and architectures provide the solution
vocabulary

e Our understanding of what works now, and how it
works, affects our wants and perceived needs

e The insights from our experiences with existing systems
helps us imagine what might work and
enables us to assess development time and costs

e - Requirements analysis and consideration of design
must be pursued at the same time

Software Architecture: Foundations, Theory, and Practi

Non-Functional Properties (NFP)

e NFPs are the result of architectural choices

e NFP questions are raised as the result of architectural
choices

e Specification of NFP might require an architectural
framework to even enable their statement

e An architectural framework will be required for
assessment of whether the properties are achievable

Software Architecture: Foundations, Theory, and Practice

The Twin Peaks Model

General
¢ Specification
Level
of
detail
' Requirements Architecture
Detailed
Independent Dependent
- L
Implementation

dependence

Software Architecture: Foundations, Theory, and Practic

Design and Architecture

e Design is an activity that pervades software development
e It is an activity that creates part of a system’s architecture
e Typically in the traditional Design Phase decisions concern

A system’s structure

Identification of its primary components

Their interconnections

e Architecture denotes the set of principal design decisions
about a system

That is more than just structure

Software Architecture: Foundations, Theory, and Pract a

Architecture-Centric Design

e Traditional design phase suggests translating the
requirements into algorithms, so a programmer can
implement them

| o Architecture-centric design

stakeholder issues

decision about use of COTS component
overarching style and structure
package and primary class structure
deployment issues

post implementation/deployment issues

11

Software Architecture: Foundations, Theory, and Practice :

Design Techniques

e Basic conceptual tools
Separation of concerns
Abstraction
Modularity

e Two illustrative widely adapted strategies
Object-oriented design
Domain-specific software architectures (DSSA)

Software Architecture: Foundations, Theory, and Practice 5

Learning Objectives

e Understand architecture in its relation to project phases
e Distinguish between OOD and S/W architecture

e List implementation techniques for S/W architecture

e Understand role of analysis in architecture

13

Software Architecture: Foundations, Theory, and Practice

Object-Oriented Design (OOD)

e Objects
Main abstraction entity in OOD

Encapsulations of state with functions for accessing
and manipulating that state

14

Software Architecture: Foundations, Theory, and Practice

Pros and Cons of OOD

e Pros
UML modeling notation
Design patterns
- e Cons
Provides only
e One level of encapsulation (the object)
e One notion of interface

e One type of explicit connector (procedure call)
Even message passing is realized via procedure calls

OO programming language might dictate important design
decisions

OOD assumes a shared address space

Software Architecture: Foundations, Theory, and Practicr

DSSA

e Capturing and characterizing the best solutions and best
practices from past projects within a domain

e Production of new applications can focus on the points of
novel variation

e Reuse applicable parts of the architecture and
implementation

e Applicable for product lines

—>Recall the Philips Koala example discussed in the
previous lecture

Software Architecture: Foundations, Theory, and Practice 5

Learning Objectives

e Understand architecture in its relation to project phases
e Distinguish between OOD and S/W architecture

e List implementation techniques for S/W architecture

e Understand role of analysis in architecture

17

Software Architecture: Foundations, Theory, and Practicr

Implementation

e The objective is to create machine-executable source
code

That code should be faithful to the architecture
e Alternatively, it may adapt the architecture
e How much adaptation is allowed?

e Architecturally-relevant vs. -unimportant
adaptations

It must fully develop all outstanding details of the
application

Software Architecture: Foundations, Theory, and Prac :

Faithful Implementation

e All of the structural elements found in the architecture
are implemented in the source code

e Source code must not utilize major new computational
elements that have no corresponding elements in the
architecture

e Source code must not contain new connections between
architectural elements that are not found in the
architecture

e Is this realistic?
Overly constraining?
What if we deviate from this?

19

Software Architecture: Foundations, Theory, and

Unfaithful Implementation

e The implementation does have an architecture
It is latent, as opposed to what is documented.

e Failure to recognize the distinction between planned and
implemented architecture

robs one of the ability to reason about the
application’s architecture in the future

misleads all stakeholders regarding what they believe
they have as opposed to what they really have

makes any development or evolution strategy that is
based on the documented (but inaccurate)
architecture doomed to failure

Software Architecture: Foundations, Theory, and Practicr

Implementation Strategies

e Generative techniques
e.g. parser generators
e Frameworks

collections of source code with identified places where
the engineer must “fill in the blanks”

e Middleware

CORBA, DCOM, RPC, ...
e Reuse-based techniques

COTS, open-source, in-house
e Writing all code manually

21

Software Architecture: Foundations, Theory, and Practice

Stakeholder Concerns

How It All S g

' Models
A\ :

F i : style | : inci

I t S Product ; Y 5 (Izlr:i:g:lal
Conception : | Components and : S

(Reqt.s & ; Connectors : decisions)

T Design)
ogether ™/
+
| UML or other detailed design notation |
Detailed Design Assoctation (gli?;r;gg?
| | Attributes Il:i:j UML design decisions;
: | Operations omponent | : addition of others)

Framework (Bridge
selection and from style
development to platform;

addition of
principal design
decisions)

Source code... (Implementation
consistent with

all principal
design decisions)

Componentand | [e
connector | —>» | e

implementation

Il
Finished Application

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice 5

Learning Objectives

e Understand architecture in its relation to project phases
e Distinguish between OOD and S/W architecture

e List implementation techniques for S/W architecture

e Understand role of analysis in architecture

23

Software Architecture: Foundations, Theory, and Practice

Analysis and Testing

e Analysis and testing are activities undertaken to assess
the qualities of an artifact

e The earlier an error is detected and corrected the lower
. the aggregate cost

e Rigorous representations are required for analysis, so
precise questions can be asked and answered

24

Software Architecture: Foundations, Theory, and Practi

Analysis of Architectural Models

e Formal architectural model can be examined for internal
consistency and correctness

e An analysis on a formal model can reveal
Component mismatch
Incomplete specifications
Undesired communication patterns
Deadlocks
Security flaws

e It can be used for size and development time
estimations

25

E

Software Architecture: Foundations, Theory, and Practice

Analysis of Architectural Models
(cont’'d)

e Architectural model
may be examined for consistency with requirements

may be used in determining analysis and testing
strategies for source code

may be used to check if an implementation is faithful

26

Software Architecture: Foundations, Theory, and Pract a

Evolution and Maintenance

e All activities that chronologically follow the release of an
application

e Software will evolve

Regardless of whether one is using an
architecture-centric development process or not

e The traditional software engineering approach to maintenance
is largely ad hoc

Risk of architectural decay and overall quality degradation
e Architecture-centric approach

Sustained focus on an explicit, substantive, modifiable,
faithful architectural model

Software Architecture: Foundations, Theory, and Practice 5

Architecture-Centric Evolution
Process

Motivation
Evaluation or assessment
Design and choice of approach

Action
includes preparation for the next round of adaptation

28

Software Architecture: Foundations, Theory, and Prac :

Summary (1)

e A proper view of software architecture affects every
aspect of the classical software engineering activities

e The requirements activity is a co-equal partner with
design activities

e The design activity is enriched by techniques that exploit
knowledge gained in previous product developments

e The implementation activity

IS centered on creating a faithful implementation of
the architecture

utilizes a variety of techniques to achieve this in a
cost-effective manner

Software Architecture: Foundations, Theory, and Practice

Summary (2)

e Analysis and testing activities can be focused on and
guided by the architecture

e Evolution activities revolve around the product’s
architecture.

e An equal focus on process and product results from a
proper understanding of the role of software architecture

