
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectures
in Context

Software Architecture
Lecture 2

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

2

Software Architecture: Foundations, Theory, and Practice	

Fundamental Understanding

  Architecture is a set of principal design decisions about a
software system

  Three fundamental understandings of software
architecture
  Every application has an architecture
  Every application has at least one architect
  Architecture is not a phase of development

3

Software Architecture: Foundations, Theory, and Practice	

Wrong View: Architecture as a
Phase

  Treating architecture as a phase denies its
foundational role in software development

  More than “high-level design”
  Architecture is also represented, e.g., by object code,

source code, …

4

Software Architecture: Foundations, Theory, and Practice	

Context of Software Architecture

  Requirements
  Design
  Implementation
  Analysis and Testing
  Evolution
  Development Process

5

Software Architecture: Foundations, Theory, and Practice	

Requirements Analysis

  Traditional SE suggests requirements analysis should
remain unsullied by any consideration for a design

  However, without reference to existing architectures it
becomes difficult to assess practicality, schedules, or
costs
  In building architecture we talk about specific rooms…
  …rather than the abstract concept “means for

providing shelter”
  In engineering new products come from the observation

of existing solution and their limitations

6

Software Architecture: Foundations, Theory, and Practice	

New Perspective on Requirements
Analysis

  Existing designs and architectures provide the solution
vocabulary

  Our understanding of what works now, and how it
works, affects our wants and perceived needs

  The insights from our experiences with existing systems
  helps us imagine what might work and
  enables us to assess development time and costs

  Requirements analysis and consideration of design
must be pursued at the same time

7

Software Architecture: Foundations, Theory, and Practice	

Non-Functional Properties (NFP)

  NFPs are the result of architectural choices
  NFP questions are raised as the result of architectural

choices
  Specification of NFP might require an architectural

framework to even enable their statement
  An architectural framework will be required for

assessment of whether the properties are achievable

8

Software Architecture: Foundations, Theory, and Practice	

The Twin Peaks Model

9

Software Architecture: Foundations, Theory, and Practice	

Design and Architecture

  Design is an activity that pervades software development
  It is an activity that creates part of a system’s architecture
  Typically in the traditional Design Phase decisions concern

  A system’s structure
  Identification of its primary components
  Their interconnections

  Architecture denotes the set of principal design decisions
about a system
  That is more than just structure

10

Software Architecture: Foundations, Theory, and Practice	

Architecture-Centric Design

  Traditional design phase suggests translating the
requirements into algorithms, so a programmer can
implement them

  Architecture-centric design
  stakeholder issues
  decision about use of COTS component
  overarching style and structure
  package and primary class structure
  deployment issues
  post implementation/deployment issues

11

Software Architecture: Foundations, Theory, and Practice	

Design Techniques

  Basic conceptual tools
  Separation of concerns
  Abstraction
  Modularity

  Two illustrative widely adapted strategies
  Object-oriented design
  Domain-specific software architectures (DSSA)

12

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

13

Software Architecture: Foundations, Theory, and Practice	

Object-Oriented Design (OOD)

  Objects
  Main abstraction entity in OOD
  Encapsulations of state with functions for accessing

and manipulating that state

14

Software Architecture: Foundations, Theory, and Practice	

Pros and Cons of OOD

  Pros
  UML modeling notation
  Design patterns

  Cons
  Provides only

 One level of encapsulation (the object)
 One notion of interface
 One type of explicit connector (procedure call)

 Even message passing is realized via procedure calls
  OO programming language might dictate important design

decisions
  OOD assumes a shared address space

15

Software Architecture: Foundations, Theory, and Practice	

DSSA

  Capturing and characterizing the best solutions and best
practices from past projects within a domain

  Production of new applications can focus on the points of
novel variation

  Reuse applicable parts of the architecture and
implementation

  Applicable for product lines
  Recall the Philips Koala example discussed in the

previous lecture

16

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

17

Software Architecture: Foundations, Theory, and Practice	

Implementation

  The objective is to create machine-executable source
code
  That code should be faithful to the architecture

 Alternatively, it may adapt the architecture
 How much adaptation is allowed?
 Architecturally-relevant vs. -unimportant

adaptations
  It must fully develop all outstanding details of the

application

18

Software Architecture: Foundations, Theory, and Practice	

Faithful Implementation

  All of the structural elements found in the architecture
are implemented in the source code

  Source code must not utilize major new computational
elements that have no corresponding elements in the
architecture

  Source code must not contain new connections between
architectural elements that are not found in the
architecture

  Is this realistic?
Overly constraining?
What if we deviate from this?

19

Software Architecture: Foundations, Theory, and Practice	

Unfaithful Implementation

  The implementation does have an architecture
  It is latent, as opposed to what is documented.

  Failure to recognize the distinction between planned and
implemented architecture
  robs one of the ability to reason about the

application’s architecture in the future
  misleads all stakeholders regarding what they believe

they have as opposed to what they really have
  makes any development or evolution strategy that is

based on the documented (but inaccurate)
architecture doomed to failure

20

Software Architecture: Foundations, Theory, and Practice	

Implementation Strategies

  Generative techniques
  e.g. parser generators

  Frameworks
  collections of source code with identified places where

the engineer must “fill in the blanks”
  Middleware

  CORBA, DCOM, RPC, …
  Reuse-based techniques

  COTS, open-source, in-house
  Writing all code manually

21

Software Architecture: Foundations, Theory, and Practice	

How It All
Fits
Together

22

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Understand architecture in its relation to project phases

  Distinguish between OOD and S/W architecture

  List implementation techniques for S/W architecture

  Understand role of analysis in architecture

23

Software Architecture: Foundations, Theory, and Practice	

Analysis and Testing

  Analysis and testing are activities undertaken to assess
the qualities of an artifact

  The earlier an error is detected and corrected the lower
the aggregate cost

  Rigorous representations are required for analysis, so
precise questions can be asked and answered

24

Software Architecture: Foundations, Theory, and Practice	

Analysis of Architectural Models

  Formal architectural model can be examined for internal
consistency and correctness

  An analysis on a formal model can reveal
  Component mismatch
  Incomplete specifications
  Undesired communication patterns
  Deadlocks
  Security flaws

  It can be used for size and development time
estimations

25

Software Architecture: Foundations, Theory, and Practice	

Analysis of Architectural Models
(cont’d)

  Architectural model
  may be examined for consistency with requirements
  may be used in determining analysis and testing

strategies for source code
  may be used to check if an implementation is faithful

26

Software Architecture: Foundations, Theory, and Practice	

Evolution and Maintenance

  All activities that chronologically follow the release of an
application

  Software will evolve
  Regardless of whether one is using an

architecture-centric development process or not
  The traditional software engineering approach to maintenance

is largely ad hoc
  Risk of architectural decay and overall quality degradation

  Architecture-centric approach
  Sustained focus on an explicit, substantive, modifiable,

faithful architectural model

27

Software Architecture: Foundations, Theory, and Practice	

Architecture-Centric Evolution
Process

  Motivation
  Evaluation or assessment
  Design and choice of approach
  Action

  includes preparation for the next round of adaptation

28

Software Architecture: Foundations, Theory, and Practice	

Summary (1)

  A proper view of software architecture affects every
aspect of the classical software engineering activities

  The requirements activity is a co-equal partner with
design activities

  The design activity is enriched by techniques that exploit
knowledge gained in previous product developments

  The implementation activity
  is centered on creating a faithful implementation of

the architecture
  utilizes a variety of techniques to achieve this in a

cost-effective manner

29

Software Architecture: Foundations, Theory, and Practice	

Summary (2)

  Analysis and testing activities can be focused on and
guided by the architecture

  Evolution activities revolve around the product’s
architecture.

  An equal focus on process and product results from a
proper understanding of the role of software architecture

30

