Basic Concepts

Software Architecture
Lecture 3

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Software Architecture: Foundations, Theory, and Pract a

Learning Objectives

e Formally define software architecture
e Distinguish prescriptive Versus descriptive architectures

' o List the causes and types of architectural degradation,
and the challenges of architecture recovery

e Understand elements of software architecture and
differentiate between components and connectors

e Delineate the role of architectural styles and patterns in
a software architecture

Software Architecture: Foundations, Theory, and Pract a

What is Software Architecture?

e Definition:

+ A software system’s architecture is the set of
principal design decisions about the system

e Software architecture is the blueprint for a software
system’s construction and evolution

e Design decisions encompass every facet of the
system under development

Structure

Behavior

Interaction
Non-functional properties

Software Architecture: Foundations, Theory, and Practice

Examples of Design Decisions
e System Structure (e.qg., central component)

' : Functional behaviour (e.g., sequence of opeations)
e Interactions (e.g., event notifications)

e Non-functional properties (e.g., no single point of failure)

e System’s Implementation (e.g., Using Java Swing toolkit)

4

Software Architecture: Foundations, Theory, and Practicr

What is "Principal”?

e "'Principal” implies a degree of importance that grants a
design decision “architectural status”

It implies that not all design decisions are
architectural

That is, they do not necessarily impact a system’s
architecture

e How one defines “principal” will depend on what the
stakeholders define as the system goals

III

Software Architecture: Foundations, Theory, and Practice

Temporal Aspect

e Design decisions are and unmade over a system’s
lifetime = Architecture has a temporal aspect

E

e At any given point in time the system has only one
architecture

e A system’s architecture will change over time
Architectures can be forked, converge etc.
Typically many related architectures are in play

Software Architecture: Foundations, Theory, and Pract a

Learning Objectives

e Formally define software architecture
e Distinguish prescriptive Versus descriptive architectures

' o List the causes and types of architectural degradation,
and the challenges of architecture recovery

e Understand elements of software architecture and
differentiate between components and connectors

e Delineate the role of architectural styles and patterns in
a software architecture

Software Architecture: Foundations, Theory, and Practi

Prescriptive vs. Descriptive
Architecture

e A system’s prescriptive architecture captures the design
decisions made prior to the system’s construction

It is the as-conceived or as-intended architecture

e A system’s descriptive architecture describes how the
system has been built

It is the as-implemented or as-realized architecture

Software Architecture: Foundations, Theory, and Practice

Prescriptive vs. Descriptive

Tirotly

Clock

Ication \l/

ClockCorn

a: |otn‘lc%/l0: roytica tio Sarotitication

S:qulestT

Clock :
Clock

ClockCon

a: lotlflcatli/ \l/: 1o Pitjea tio

Warebhouse

Dellve wPort

Vellcle

Til?(llé&t

Warbouse Dellve yPort vellcle
50 eq’:\:\st\ ':if_&_'e\“ %len

EowvterConrn

L:: 1otitication

CamoPRovter

5:kq

.m’r

GraphlcsConra

Graotitication

W

CGraphicsb hdhag

Graphlcsb |ld|lg.

erconn

N\
t:laq;% q\te\ Z/queﬁ
Route

2:rotitication

CamoPRouvter

szteqlestT

GraphlciCony

W

Grarotitication

Craphks hdhg :

Graphlcsb hhdhaq

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission

Software Architecture: Foundations, Theory, and Practice

Prescriptive vs. Descriptive

Which architecture is “correct”?

Are the two architectures consistent with
one another?

What criteria are used to establish the
consistency between the two architectures?

On what information is the answer to the
preceding questions based?

| I

6:aotitication 6:rotification
4 A

Graphlcsb hdhqg : GCraphksb hdlhg @
Graphlcsb lvdlyg Graphlcsb hhdhg

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pract a

Learning Objectives

e Formally define software architecture
e Distinguish prescriptive Versus descriptive architectures

' o List the causes and types of architectural degradation,
and the challenges of architecture recovery

e Understand elements of software architecture and
differentiate between components and connectors

e Delineate the role of architectural styles and patterns in
a software architecture

Software Architecture: Foundations, Theory, and Prac :

Architectural Evolution

e When a system evolves, ideally its prescriptive
architecture is modified first

e In practice, the system — and thus its descriptive
architecture — is often directly modified

e This happens because of

Developer sloppiness

Perception of short deadlines which prevent thinking
through and documenting

Lack of documented prescriptive architecture
Need or desire for code optimizations
Inadequate techniques or tool support

Software Architecture: Foundations, Theory, and Pra__

Architectural Degradation

e Two related concepts
Architectural drift
Architectural erosion
e Architectural driftis introduction of principal design
decisions into a system’s descriptive architecture that

are not included in, encompassed by, or implied
by the prescriptive architecture

but which do not violate any of the prescriptive
architecture’s design decisions

e Architectural erosion is the introduction of
architectural design decisions into a system’s
descriptive architecture that violate its prescriptive
architecture

Software Architecture: Foundations, Theory, and Practice

Architectural Drift or Erosion ?

Tarotitication \l/

Clock

ClockCorn

szteqlestT

Clock :
Clock

ClockCony

a: lotlﬂcatli/ \l/: 1o Pitjea tio

Warebhouse

Dellve wPort

Til@([lé&t

Vellcle

a: |otlﬂcatlc;/:l/0:louflcatlo Srotitication
Warelouse/ Dellve ryPort veblcle
i N\
'\ /
t:qu\st\':t}f&“\“ %:qulen

EowvterConrn

L:: 1otitication

CamoPRovter

5:kq

.m’r

GraphlcsConra

Graotitication

W

CGraphicsb hdhag

Graphlcsb |ld|lg.

erconn

taq}} qe\ Z/nquen
BRoute

2:rotitication

CamoPRouvter

szreqlestT

GraphlciCony

.o"

Grarotitication

Caphkss hdhg :

Graphlcsb hhdhaq

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission

Software Architecture: Foundations, Theory, and Practic

Architectural Recovery

e If architectural degradation is allowed to occur, one will
be forced to recover the system’s architecture sooner or
later

e Architectural recovery is the process of determining a
software system’s architecture from its implementation-
level artifacts

e Implementation-level artifacts can be
Source code
Executable files
Java .class files

15

Software Architecture: Foundations, Theory, and Practice

Can you recover this architecture ?

P

e

T T —
AR A S A i i ® e At BT

s
[T eswr— ‘m-._._
——.

AR A g Y O A A e
.~ T ~t

L XUt At s it e 18

RS

’ T e L]
T N, — R
| e et — T ey
JE T = : et il R WG O

tﬁ‘.‘.?ﬁmégww‘ﬁ;?' e

A S Mo s P AN s 408
S, e

o e o v A U
AT e e o S R

R

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pract a

Learning Objectives

e Formally define software architecture
e Distinguish prescriptive Versus descriptive architectures

' o List the causes and types of architectural degradation,
and the challenges of architecture recovery

e Understand elements of software architecture and
differentiate between components and connectors

e Delineate the role of architectural styles and patterns in
a software architecture

Software Architecture: Foundations, Theory, and Practicr

Software Architecture’s Elements

e A software system’s architecture typically is not (and
should not be) a uniform monolith

e A software system’s architecture should be a
composition and interplay of different elements

Processing

Data, also referred as information or state
Interaction

18

Software Architecture: Foundations, Theory, and Practi:

Components

Elements that encapsulate processing and data in a
system’s architecture are referred to as software
components

Definition
A software component is an architectural entity that

e encapsulates a subset of the system’s functionality
and/or data

e restricts access to that subset via an explicitly
defined interface

e has explicitly defined dependencies on its required
execution context

Components typically provide application-specific services

Software Architecture: Foundations, Theory, and Practice

Examples of Components

e Application-specific components
Examples: Cargo, warehouse, vehicle

e Limited reuse components
Examples: Web servers, clocks, connections

e Reusable components
Examples: GUI components, class and math libraries

Software Architecture: Foundations, Theory, and Pra;g.j

Connectors

e In complex systems interaction may become more
important and challenging than the functionality of
the individual components

e Definition

A software connector is an architectural building
block tasked with effecting and regulating
interactions among components

e In many software systems connectors are usually
simple procedure calls or shared data accesses

e Connectors typically provide application-independent
interaction facilities

Can be described independent of the components

Software Architecture: Foundations, Theory, and Practice

Examples of Connectors

Procedure call connectors
Shared memory connectors
Message passing connectors
Streaming connectors
Distribution connectors
Wrapper/adaptor connectors

22

Software Architecture: Foundations, Theory, and Practice

Configurations

e Components and connectors are composed in a specific
way in a given system'’s architecture to accomplish that
system’s objective

. o Definition
An architectural configuration, or topology, is a set of

specific associations between the components and
connectors of a software system’s architecture

23

Software Architecture: Foundations, Theory, and Practice

D ecision
Module

Display
Manager

C_Display
Manager

\

ASymmetric

/

C_Troops
Manager

\ ASymmetric

/

C_App
Manager

S_Display
Manager

\ ASymmetric /

mmetric

Asymmetric

Strategy
Analyzer

(Symmetric

u

u

Deployment
Advisor

Simulation
Agent

T

Asymmetric

v

v

Deployment

O Strategies

Repository
v

S_Troops
Manager

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pract a

Learning Objectives

e Formally define software architecture
e Distinguish prescriptive Versus descriptive architectures

' o List the causes and types of architectural degradation,
and the challenges of architecture recovery

e Understand elements of software architecture and
differentiate between components and connectors

e Delineate the role of architectural styles and patterns in
a software architecture

Software Architecture: Foundations, Theory, and Practi:

Architectural Styles

e Certain design choices regularly result in solutions with superior
properties

Compared to other possible alternatives, solutions such as this
are more elegant, effective, efficient, dependable, evolvable,
scalable, and so on

e Definition

An architectural style is a named collection of architectural
design decisions that

e are applicable in a given development context

e constrain architectural design decisions that are specific to a
particular system within that context

e elicit beneficial qualities in each resulting system

Software Architecture: Foundations, Theory, and Pra__

Architectural Style: Example

e REST style (Representational State Transfer) — HTTP
Uniform Interface between clients and servers

Stateless: No client context stored on server between
requests. All state is carried in the request URL.

Clients should be able to cache responses to requests

Layered architecture: Clients cannot tell if they are
connected directly to the server or thro” a proxy

Code on demand (optional): Server should be able to
extend the client’s functionality thro’ client-side scripts

Software Architecture: Foundations, Theory, and Pract a

Architectural Patterns

e Definition

An architectural pattern is a set of architectural
design decisions that are applicable to a recurring
design problem, and parameterized to account for
different software development contexts in which
that problem appears

e A widely used pattern in modern distributed systems
is the three-tiered system pattern

Science

Banking
E-commerce
Reservation systems

28

Software Architecture: Foundations, Theory, and Practice

Three-Tiered Pattern

Request Request
Front Middle = Back
Tier = Tier Tier
eply Reply

e Front Tier

Contains the user interface functionality to access the
system’s services

e Middle Tier
Contains the application’s major functionality

e Back Tier

Contains the application’s data access and storage
functionality

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pra;g.j

Differences between Style and
Pattern

e Style e Pattern
Provides a set of Provides concrete
guiding principles in solutions, although
adopting solutions parameterized to the
Requires considerable specific problem.
effort to apply. Requires very little
Architect needs to manual effort or
justify the design justification to apply.
choices based on the Usually applies to
architectural style. specific systems (e.q.,

GUI-based systems)

30

Software Architecture: Foundations, Theory, and Pract a

Learning Objectives

e Formally define software architecture
e Distinguish prescriptive Versus descriptive architectures

' o List the causes and types of architectural degradation,
and the challenges of architecture recovery

e Understand elements of software architecture and
differentiate between components and connectors

e Delineate the role of architectural styles and patterns in
a software architecture

Software Architecture: Foundations, Theory, and

Architectural Models, Views, and
Visualizations

e Architecture Model

An artifact documenting some or all of the
architectural design decisions about a system

e Architecture Visualization

A way of depicting some or all of the architectural
design decisions about a system to a stakeholder

e Architecture View/Perspective
A subset of related architectural design decisions
Typically pertain to a cross-cutting functionality

Software Architecture: Foundations, Theory, and Practice

Architectural Visualization:
Example

Graphical Diagram

LunarLander
Userlnterface
landerValues calculationService
O o\.
calculationService
Calculation
landerValues
R

landerValues

DataStore

Textual descriptions

component DataStore({
provide landerValues;

}

component Calculation({
require landerValues;
provide calculationService;

}

component UserInterface{
require calculationService;
require landerValues;

}

component LunarLander
inst
U: UserInterface;
C: Calculation;
D: DataStore;
bind
C.landerValues -- D.landerValues;
U.landerValues —-- D.landerValues;
U.calculationService --
C.calculationService;

}

Software Architecture: Foundations, Theory, and Practice

Architectural Views: Example

Structural View Deployment View

Clock :
Clock

Tarotitication \L

ClockCon

a: |otlflcatly/‘lllonouﬂca o Srotitlcation

Warhorse DellveryPort Vellcle

N\
t:nq;%“m\“\“ Z:r&qlen

| Rovterconry

LZ: rotification

cCamoRowter

szeqlenT

GraphicsiCory

Glaotitication

Graphlcsb hdhag :
Graphlcsb hhdlrg

Software Architecture: Foundations, Theory, and Pract a

Learning Objectives

e Formally define software architecture
e Distinguish prescriptive Versus descriptive architectures

' o List the causes and types of architectural degradation,
and the challenges of architecture recovery

e Understand elements of software architecture and
differentiate between components and connectors

e Delineate the role of architectural styles and patterns in
a software architecture

