
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Basic Concepts

Software Architecture
Lecture 3

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

2

Software Architecture: Foundations, Theory, and Practice	

What is Software Architecture?

  Definition:
  A software system’s architecture is the set of

principal design decisions about the system
  Software architecture is the blueprint for a software

system’s construction and evolution
  Design decisions encompass every facet of the

system under development
  Structure
  Behavior
  Interaction
  Non-functional properties

3

Software Architecture: Foundations, Theory, and Practice	

Examples of Design Decisions

  System Structure (e.g., central component)
 
  Functional behaviour (e.g., sequence of opeations)

  Interactions (e.g., event notifications)

  Non-functional properties (e.g., no single point of failure)

  System’s Implementation (e.g., Using Java Swing toolkit)

4

Software Architecture: Foundations, Theory, and Practice	

What is “Principal”?

  “Principal” implies a degree of importance that grants a
design decision “architectural status”
  It implies that not all design decisions are

architectural
  That is, they do not necessarily impact a system’s

architecture
  How one defines “principal” will depend on what the

stakeholders define as the system goals

5

Software Architecture: Foundations, Theory, and Practice	

Temporal Aspect

  Design decisions are and unmade over a system’s
lifetime Architecture has a temporal aspect

  At any given point in time the system has only one
architecture

  A system’s architecture will change over time
  Architectures can be forked, converge etc.
  Typically many related architectures are in play

6

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

7

Software Architecture: Foundations, Theory, and Practice	

Prescriptive vs. Descriptive
Architecture

  A system’s prescriptive architecture captures the design
decisions made prior to the system’s construction
  It is the as-conceived or as-intended architecture

  A system’s descriptive architecture describes how the
system has been built
  It is the as-implemented or as-realized architecture

8

Software Architecture: Foundations, Theory, and Practice	

Prescriptive vs. Descriptive

9

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Prescriptive vs. Descriptive

10

  Which architecture is “correct”? "
  Are the two architectures consistent with  

 one another? "
  What criteria are used to establish the  

 consistency between the two architectures? "
  On what information is the answer to the  

 preceding questions based? "

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

11

Software Architecture: Foundations, Theory, and Practice	

Architectural Evolution

  When a system evolves, ideally its prescriptive
architecture is modified first

  In practice, the system – and thus its descriptive
architecture – is often directly modified

  This happens because of
  Developer sloppiness
  Perception of short deadlines which prevent thinking

through and documenting
  Lack of documented prescriptive architecture
  Need or desire for code optimizations
  Inadequate techniques or tool support

12

Software Architecture: Foundations, Theory, and Practice	

Architectural Degradation
  Two related concepts

  Architectural drift
  Architectural erosion

  Architectural drift is introduction of principal design
decisions into a system’s descriptive architecture that
  are not included in, encompassed by, or implied

by the prescriptive architecture
  but which do not violate any of the prescriptive

architecture’s design decisions
  Architectural erosion is the introduction of

architectural design decisions into a system’s
descriptive architecture that violate its prescriptive
architecture

13

Software Architecture: Foundations, Theory, and Practice	

Architectural Drift or Erosion ?

14

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Architectural Recovery

  If architectural degradation is allowed to occur, one will
be forced to recover the system’s architecture sooner or
later

  Architectural recovery is the process of determining a
software system’s architecture from its implementation-
level artifacts

  Implementation-level artifacts can be
  Source code
  Executable files
  Java .class files

15

Software Architecture: Foundations, Theory, and Practice	

Can you recover this architecture ?

16

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

17

Software Architecture: Foundations, Theory, and Practice	

Software Architecture’s Elements

  A software system’s architecture typically is not (and
should not be) a uniform monolith

  A software system’s architecture should be a
composition and interplay of different elements
  Processing
  Data, also referred as information or state
  Interaction

18

Software Architecture: Foundations, Theory, and Practice	

Components
  Elements that encapsulate processing and data in a

system’s architecture are referred to as software
components

  Definition
  A software component is an architectural entity that

 encapsulates a subset of the system’s functionality
and/or data

  restricts access to that subset via an explicitly
defined interface

 has explicitly defined dependencies on its required
execution context

  Components typically provide application-specific services

19

Software Architecture: Foundations, Theory, and Practice	

Examples of Components

  Application-specific components
  Examples: Cargo, warehouse, vehicle

  Limited reuse components
  Examples: Web servers, clocks, connections

  Reusable components
  Examples: GUI components, class and math libraries

20

Software Architecture: Foundations, Theory, and Practice	

Connectors

  In complex systems interaction may become more
important and challenging than the functionality of
the individual components

  Definition
  A software connector is an architectural building

block tasked with effecting and regulating
interactions among components

  In many software systems connectors are usually
simple procedure calls or shared data accesses

  Connectors typically provide application-independent
interaction facilities
  Can be described independent of the components

21

Software Architecture: Foundations, Theory, and Practice	

Examples of Connectors

  Procedure call connectors
  Shared memory connectors
  Message passing connectors
  Streaming connectors
  Distribution connectors
  Wrapper/adaptor connectors

22

Software Architecture: Foundations, Theory, and Practice	

Configurations

  Components and connectors are composed in a specific
way in a given system’s architecture to accomplish that
system’s objective

  Definition
  An architectural configuration, or topology, is a set of

specific associations between the components and
connectors of a software system’s architecture

23

Software Architecture: Foundations, Theory, and Practice	

An Example Configuration

24

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

25

Software Architecture: Foundations, Theory, and Practice	

Architectural Styles

  Certain design choices regularly result in solutions with superior
properties
  Compared to other possible alternatives, solutions such as this

are more elegant, effective, efficient, dependable, evolvable,
scalable, and so on

  Definition
  An architectural style is a named collection of architectural

design decisions that
  are applicable in a given development context
  constrain architectural design decisions that are specific to a

particular system within that context
  elicit beneficial qualities in each resulting system

26

Software Architecture: Foundations, Theory, and Practice	

Architectural Style: Example

  REST style (Representational State Transfer) – HTTP
  Uniform Interface between clients and servers
  Stateless: No client context stored on server between

requests. All state is carried in the request URL.
  Clients should be able to cache responses to requests
  Layered architecture: Clients cannot tell if they are

connected directly to the server or thro’ a proxy
  Code on demand (optional): Server should be able to

extend the client’s functionality thro’ client-side scripts

27

Software Architecture: Foundations, Theory, and Practice	

Architectural Patterns
  Definition

  An architectural pattern is a set of architectural
design decisions that are applicable to a recurring
design problem, and parameterized to account for
different software development contexts in which
that problem appears

  A widely used pattern in modern distributed systems
is the three-tiered system pattern
  Science
  Banking
  E-commerce
  Reservation systems

28

Software Architecture: Foundations, Theory, and Practice	

Three-Tiered Pattern

  Front Tier
  Contains the user interface functionality to access the

system’s services
  Middle Tier

  Contains the application’s major functionality
  Back Tier

  Contains the application’s data access and storage
functionality

29

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Differences between Style and
Pattern

  Style
  Provides a set of

guiding principles in
adopting solutions

  Requires considerable
effort to apply.
Architect needs to
justify the design
choices based on the
architectural style.

  Pattern
  Provides concrete

solutions, although
parameterized to the
specific problem.

  Requires very little
manual effort or
justification to apply.

  Usually applies to
specific systems (e.g.,
GUI-based systems)

30

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

31

Software Architecture: Foundations, Theory, and Practice	

Architectural Models, Views, and
Visualizations

  Architecture Model
  An artifact documenting some or all of the

architectural design decisions about a system
  Architecture Visualization

  A way of depicting some or all of the architectural
design decisions about a system to a stakeholder

  Architecture View/Perspective
  A subset of related architectural design decisions
  Typically pertain to a cross-cutting functionality

32

Software Architecture: Foundations, Theory, and Practice	

Architectural Visualization:
Example

Graphical Diagram Textual descriptions

33

component DataStore{
 provide landerValues;
}

component Calculation{
 require landerValues;
 provide calculationService;
}

component UserInterface{
 require calculationService;
 require landerValues;
}

component LunarLander{
inst
 U: UserInterface;
 C: Calculation;
 D: DataStore;
bind
 C.landerValues -- D.landerValues;
 U.landerValues -- D.landerValues;
 U.calculationService --
C.calculationService;
}

Software Architecture: Foundations, Theory, and Practice	

Architectural Views: Example

Structural View Deployment View

34

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

35

