
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Basic Concepts

Software Architecture
Lecture 3

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

2

Software Architecture: Foundations, Theory, and Practice	

What is Software Architecture?

  Definition:
  A software system’s architecture is the set of

principal design decisions about the system
  Software architecture is the blueprint for a software

system’s construction and evolution
  Design decisions encompass every facet of the

system under development
  Structure
  Behavior
  Interaction
  Non-functional properties

3

Software Architecture: Foundations, Theory, and Practice	

Examples of Design Decisions

  System Structure (e.g., central component)
 
  Functional behaviour (e.g., sequence of opeations)

  Interactions (e.g., event notifications)

  Non-functional properties (e.g., no single point of failure)

  System’s Implementation (e.g., Using Java Swing toolkit)

4

Software Architecture: Foundations, Theory, and Practice	

What is “Principal”?

  “Principal” implies a degree of importance that grants a
design decision “architectural status”
  It implies that not all design decisions are

architectural
  That is, they do not necessarily impact a system’s

architecture
  How one defines “principal” will depend on what the

stakeholders define as the system goals

5

Software Architecture: Foundations, Theory, and Practice	

Temporal Aspect

  Design decisions are and unmade over a system’s
lifetime  Architecture has a temporal aspect

  At any given point in time the system has only one
architecture

  A system’s architecture will change over time
  Architectures can be forked, converge etc.
  Typically many related architectures are in play

6

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

7

Software Architecture: Foundations, Theory, and Practice	

Prescriptive vs. Descriptive
Architecture

  A system’s prescriptive architecture captures the design
decisions made prior to the system’s construction
  It is the as-conceived or as-intended architecture

  A system’s descriptive architecture describes how the
system has been built
  It is the as-implemented or as-realized architecture

8

Software Architecture: Foundations, Theory, and Practice	

Prescriptive vs. Descriptive

9

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Prescriptive vs. Descriptive

10

  Which architecture is “correct”? "
  Are the two architectures consistent with  

 one another? "
  What criteria are used to establish the  

 consistency between the two architectures? "
  On what information is the answer to the  

 preceding questions based? "

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

11

Software Architecture: Foundations, Theory, and Practice	

Architectural Evolution

  When a system evolves, ideally its prescriptive
architecture is modified first

  In practice, the system – and thus its descriptive
architecture – is often directly modified

  This happens because of
  Developer sloppiness
  Perception of short deadlines which prevent thinking

through and documenting
  Lack of documented prescriptive architecture
  Need or desire for code optimizations
  Inadequate techniques or tool support

12

Software Architecture: Foundations, Theory, and Practice	

Architectural Degradation
  Two related concepts

  Architectural drift
  Architectural erosion

  Architectural drift is introduction of principal design
decisions into a system’s descriptive architecture that
  are not included in, encompassed by, or implied

by the prescriptive architecture
  but which do not violate any of the prescriptive

architecture’s design decisions
  Architectural erosion is the introduction of

architectural design decisions into a system’s
descriptive architecture that violate its prescriptive
architecture

13

Software Architecture: Foundations, Theory, and Practice	

Architectural Drift or Erosion ?

14

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Architectural Recovery

  If architectural degradation is allowed to occur, one will
be forced to recover the system’s architecture sooner or
later

  Architectural recovery is the process of determining a
software system’s architecture from its implementation-
level artifacts

  Implementation-level artifacts can be
  Source code
  Executable files
  Java .class files

15

Software Architecture: Foundations, Theory, and Practice	

Can you recover this architecture ?

16

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

17

Software Architecture: Foundations, Theory, and Practice	

Software Architecture’s Elements

  A software system’s architecture typically is not (and
should not be) a uniform monolith

  A software system’s architecture should be a
composition and interplay of different elements
  Processing
  Data, also referred as information or state
  Interaction

18

Software Architecture: Foundations, Theory, and Practice	

Components
  Elements that encapsulate processing and data in a

system’s architecture are referred to as software
components

  Definition
  A software component is an architectural entity that

 encapsulates a subset of the system’s functionality
and/or data

  restricts access to that subset via an explicitly
defined interface

 has explicitly defined dependencies on its required
execution context

  Components typically provide application-specific services

19

Software Architecture: Foundations, Theory, and Practice	

Examples of Components

  Application-specific components
  Examples: Cargo, warehouse, vehicle

  Limited reuse components
  Examples: Web servers, clocks, connections

  Reusable components
  Examples: GUI components, class and math libraries

20

Software Architecture: Foundations, Theory, and Practice	

Connectors

  In complex systems interaction may become more
important and challenging than the functionality of
the individual components

  Definition
  A software connector is an architectural building

block tasked with effecting and regulating
interactions among components

  In many software systems connectors are usually
simple procedure calls or shared data accesses

  Connectors typically provide application-independent
interaction facilities
  Can be described independent of the components

21

Software Architecture: Foundations, Theory, and Practice	

Examples of Connectors

  Procedure call connectors
  Shared memory connectors
  Message passing connectors
  Streaming connectors
  Distribution connectors
  Wrapper/adaptor connectors

22

Software Architecture: Foundations, Theory, and Practice	

Configurations

  Components and connectors are composed in a specific
way in a given system’s architecture to accomplish that
system’s objective

  Definition
  An architectural configuration, or topology, is a set of

specific associations between the components and
connectors of a software system’s architecture

23

Software Architecture: Foundations, Theory, and Practice	

An Example Configuration

24

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

25

Software Architecture: Foundations, Theory, and Practice	

Architectural Styles

  Certain design choices regularly result in solutions with superior
properties
  Compared to other possible alternatives, solutions such as this

are more elegant, effective, efficient, dependable, evolvable,
scalable, and so on

  Definition
  An architectural style is a named collection of architectural

design decisions that
  are applicable in a given development context
  constrain architectural design decisions that are specific to a

particular system within that context
  elicit beneficial qualities in each resulting system

26

Software Architecture: Foundations, Theory, and Practice	

Architectural Style: Example

  REST style (Representational State Transfer) – HTTP
  Uniform Interface between clients and servers
  Stateless: No client context stored on server between

requests. All state is carried in the request URL.
  Clients should be able to cache responses to requests
  Layered architecture: Clients cannot tell if they are

connected directly to the server or thro’ a proxy
  Code on demand (optional): Server should be able to

extend the client’s functionality thro’ client-side scripts

27

Software Architecture: Foundations, Theory, and Practice	

Architectural Patterns
  Definition

  An architectural pattern is a set of architectural
design decisions that are applicable to a recurring
design problem, and parameterized to account for
different software development contexts in which
that problem appears

  A widely used pattern in modern distributed systems
is the three-tiered system pattern
  Science
  Banking
  E-commerce
  Reservation systems

28

Software Architecture: Foundations, Theory, and Practice	

Three-Tiered Pattern

  Front Tier
  Contains the user interface functionality to access the

system’s services
  Middle Tier

  Contains the application’s major functionality
  Back Tier

  Contains the application’s data access and storage
functionality

29

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Differences between Style and
Pattern

  Style
  Provides a set of

guiding principles in
adopting solutions

  Requires considerable
effort to apply.
Architect needs to
justify the design
choices based on the
architectural style.

  Pattern
  Provides concrete

solutions, although
parameterized to the
specific problem.

  Requires very little
manual effort or
justification to apply.

  Usually applies to
specific systems (e.g.,
GUI-based systems)

30

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

31

Software Architecture: Foundations, Theory, and Practice	

Architectural Models, Views, and
Visualizations

  Architecture Model
  An artifact documenting some or all of the

architectural design decisions about a system
  Architecture Visualization

  A way of depicting some or all of the architectural
design decisions about a system to a stakeholder

  Architecture View/Perspective
  A subset of related architectural design decisions
  Typically pertain to a cross-cutting functionality

32

Software Architecture: Foundations, Theory, and Practice	

Architectural Visualization:
Example

Graphical Diagram Textual descriptions

33

component DataStore{
 provide landerValues;
}

component Calculation{
 require landerValues;
 provide calculationService;
}

component UserInterface{
 require calculationService;
 require landerValues;
}

component LunarLander{
inst
 U: UserInterface;
 C: Calculation;
 D: DataStore;
bind
 C.landerValues -- D.landerValues;
 U.landerValues -- D.landerValues;
 U.calculationService --
C.calculationService;
}

Software Architecture: Foundations, Theory, and Practice	

Architectural Views: Example

Structural View Deployment View

34

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formally define software architecture
  Distinguish prescriptive Versus descriptive architectures
  List the causes and types of architectural degradation,

and the challenges of architecture recovery
  Understand elements of software architecture and

differentiate between components and connectors
  Delineate the role of architectural styles and patterns in

a software architecture

35

