
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectural
Patterns and Styles

Software Architecture
Lecture 4

Software Architecture: Foundations, Theory, and Practice	

How Do You Design?

2

Where do architectures come from?

Method

1)  Efficient in familiar terrain
2)  Not always successful
3)  Predictable outcome (+ & -)
4)  Quality of methods varies

Creativity

1)  Fun!
2)  Fraught with peril
3)  May be unnecessary
4)  May yield the best

Software Architecture: Foundations, Theory, and Practice	

Identifying a Viable Strategy

  Use fundamental design tools: abstraction and
modularity.
  But how?

  Inspiration, where inspiration is needed. Predictable
techniques elsewhere.
  But where is creativity required?

  Applying own experience or experience of others.

3

Software Architecture: Foundations, Theory, and Practice	

The Tools of “Software
Engineering 101”

  Abstraction
  Abstraction(1): look at details, and abstract “up” to

concepts
  Abstraction(2): choose concepts, then add detailed

substructure, and move “down”
 Example: design of a stack class

  Separation of concerns

4

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of DSSAs and Patterns in Software
architecture, and apply common patterns to problems

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

  Understand the challenges around greenfield design
5

Software Architecture: Foundations, Theory, and Practice	

Patterns, Styles, and DSSAs

6

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Architectural Patterns

  An architectural pattern is a set of architectural design
decisions that are applicable to a recurring design
problem, and parameterized to account for different
software development contexts in which that problem
appears.

  Architectural patterns are similar to DSSAs but applied
“at a lower level” and within a much narrower scope.

7

Software Architecture: Foundations, Theory, and Practice	

State-Logic-Display: Three-Tiered
Pattern

  Application Examples
  Business applications
  Multi-player games
  Web-based applications

8

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Model-View-Controller (MVC)

  Objective: Separation between information, presentation
and user interaction.

  When a model object value changes, a notification is
sent to the view and to the controller. So that the view
can update itself and the controller can modify the view
if its logic so requires.

  When handling input from the user the windowing
system sends the user event to the controller; If a
change is required, the controller updates the model
object.

9

Software Architecture: Foundations, Theory, and Practice	

Model-View-Controller

10

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Sense-Compute-Control

11
Objective: Structuring embedded control applications

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

The Lunar Lander: A Long-Running
Example
  A simple computer game that first appeared in the

1960’s
  Simple concept:

  You (the pilot) control the descent rate of the
Apollo-era Lunar Lander
 Throttle setting controls descent engine
 Limited fuel
 Initial altitude and speed preset
 If you land with a descent rate of < 5 fps: you

win (whether there’s fuel left or not)
  “Advanced” version: joystick controls attitude &

horizontal motion
12

Software Architecture: Foundations, Theory, and Practice	

Sense-Compute-Control LL

13

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of DSSAs and Patterns in Software
architecture, and apply common patterns to problems

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

  Understand the challenges around greenfield design
14

Software Architecture: Foundations, Theory, and Practice	

Architectural Styles: Definition

  An architectural style is a named collection of architectural
design decisions that

 are applicable in a given development context
  constrain architectural design decisions that are specific

to a particular system within that context
 elicit beneficial qualities in each resulting system

  A primary way of characterizing lessons from experience in
software system design

  Reflect less domain specificity than architectural patterns
  Useful in determining everything from subroutine structure to

top-level application structure

15

Software Architecture: Foundations, Theory, and Practice	

Basic Properties of Styles

  A vocabulary of design elements
  Component and connector types; data elements
  e.g., pipes, filters, objects, servers

  A set of configuration rules
  Topological constraints that determine allowed

compositions of elements
  e.g., a component may be connected to at most two other

components
  A semantic interpretation

  Compositions of design elements have well-defined
meanings

  Possible analyses of systems built in a style
16

Software Architecture: Foundations, Theory, and Practice	

Benefits of Using Styles

  Design reuse
  Well-understood solutions applied to new problems

  Code reuse
  Shared implementations of invariant aspects of a style

  Understandability of system organization
  A phrase such as “client-server” conveys a lot of information

  Interoperability
  Supported by style standardization

  Style-specific analyses
  Enabled by the constrained design space

  Visualizations
  Style-specific depictions matching engineers’ mental models

17

Software Architecture: Foundations, Theory, and Practice	

Style Analysis Dimensions

  What is the design vocabulary?
  Component and connector types

  What are the allowable structural patterns?
  What is the underlying computational model?
  What are the essential invariants of the style?
  What are common examples of its use?
  What are the (dis)advantages of using the style?
  What are the style’s specializations?

18

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of DSSAs and Patterns in Software
architecture, and apply common patterns to problems

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

  Understand the challenges around greenfield design
19

Software Architecture: Foundations, Theory, and Practice	

Some Common Styles
  Traditional, language-

influenced styles
  Main program and

subroutines
  Object-oriented

  Layered
  Virtual machines
  Client-server

  Data-flow styles
  Batch sequential
  Pipe and filter

  Shared memory
  Blackboard
  Rule based

  Interpreter

  Interpreter
  Mobile code

  Implicit invocation

  Event-based
  Publish-subscribe

  Peer-to-peer

20

Software Architecture: Foundations, Theory, and Practice	

Main Program and Subroutines LL

21

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Object-Oriented Style

  Components are objects
  Data and associated operations

  Connectors are messages and method invocations
  Style invariants

  Objects are responsible for their internal representation
integrity

  Internal representation is hidden from other objects
  Advantages

  “Infinite malleability” of object internals
  System decomposition into sets of interacting agents

  Disadvantages
  Objects must know identities of servers
  Side effects in object method invocations 22

Software Architecture: Foundations, Theory, and Practice	

Object-Oriented LL

23

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

OO/LL in UML

24

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Layered Style

  Hierarchical system organization
  “Multi-level client-server”
  Each layer exposes an interface (API) to be used by

above layers
  Each layer acts as a

  Server: service provider to layers “above”
  Client: service consumer of layer(s) “below”

  Connectors are protocols of layer interaction
  Example: operating systems
  Virtual machine style results from fully opaque layers

25

Software Architecture: Foundations, Theory, and Practice	

Layered Style (cont’d)

  Advantages
  Increasing abstraction levels
  Evolvability
  Changes in a layer affect at most the adjacent two

layers
 Reuse

  Different implementations of layer are allowed as long
as interface is preserved

  Standardized layer interfaces for libraries and
frameworks

26

Software Architecture: Foundations, Theory, and Practice	

Layered Style (cont’d)

  Disadvantages
  Not universally applicable
  Performance

  Layers may have to be skipped
  Determining the correct abstraction level

27

Software Architecture: Foundations, Theory, and Practice	

Layered Systems/Virtual Machines

28

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Layered LL

29

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Client-Server Style

  Components are clients and servers
  Servers do not know number or identities of clients
  Clients know server’s identity
  Connectors are RPC-based network interaction protocols

30

Software Architecture: Foundations, Theory, and Practice	

Client-Server LL

31

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Data-Flow Styles

Batch Sequential
  Separate programs are executed in order; data is

passed as an aggregate from one program to the
next.

  Connectors: “The human hand” carrying tapes
between the programs, a.k.a. “sneaker-net ”

  Data Elements: Explicit, aggregate elements passed
from one component to the next upon completion of
the producing program’s execution.

  Typical uses: Transaction processing in financial
systems. “The Granddaddy of Styles”

32

Software Architecture: Foundations, Theory, and Practice	

Batch-Sequential: A Financial
Application

33

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Batch-Sequential LL

34

Not a recipe for a successful lunar mission!

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter Style

  Components are filters
  Transform input data streams into output data streams
  Possibly incremental production of output

  Connectors are pipes
  Conduits for data streams

  Style invariants
  Filters are independent (no shared state)
  Filter has no knowledge of up- or down-stream filters

  Examples
  UNIX shell signal processing
  Distributed systems parallel programming

  Example: ls invoices | grep -e August | sort!

35

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter (cont’d)

  Variations
  Pipelines — linear sequences of filters
  Bounded pipes — limited amount of data on a pipe
  Typed pipes — data strongly typed

  Advantages
  System behavior is a succession of component behaviors
  Filter addition, replacement, and reuse

 Possible to hook any two filters together
  Certain analyses

 Throughput, latency, deadlock
  Concurrent execution

36

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter (cont’d)

  Disadvantages
  Batch organization of processing
  Interactive applications
  Lowest common denominator on data transmission

37

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter LL

38

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Blackboard Style

  Two kinds of components
  Central data structure — blackboard
  Components operating on the blackboard

  System control is entirely driven by the blackboard state
  Examples

  Typically used for AI systems
  Integrated software environments (e.g., Interlisp)
  Compiler architecture

39

Software Architecture: Foundations, Theory, and Practice	

Blackboard LL

40

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Rule-Based Style

 Inference engine parses user input and determines
whether it is a fact/rule or a query. If it is a fact/rule, it
adds this entry to the knowledge base. Otherwise, it
queries the knowledge base for applicable rules and
attempts to resolve the query.

41

Software Architecture: Foundations, Theory, and Practice	

Rule-Based Style (cont’d)

  Components: User interface, inference engine,
knowledge base

  Connectors: Components are tightly interconnected, with
direct procedure calls and/or shared memory.

  Data Elements: Facts and queries
  Behavior of the application can be very easily modified

through addition or deletion of rules from the knowledge
base.

  Caution: When a large number of rules are involved
understanding the interactions between multiple rules
affected by the same facts can become very difficult.

42

Software Architecture: Foundations, Theory, and Practice	

Rule Based LL

43

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Interpreter Style
 Interpreter parses and executes input commands,
updating the state maintained by the interpreter

  Components: Command interpreter, program/interpreter
state, user interface.

  Connectors: Typically very closely bound with direct
procedure calls and shared state.

  Highly dynamic behavior possible, where the set of
commands is dynamically modified. System architecture
may remain constant while new capabilities are created
based upon existing primitives.

  Superb for end-user programmability; supports
dynamically changing set of capabilities

  Lisp and Scheme
44

Software Architecture: Foundations, Theory, and Practice	

Interpreter LL

45

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Mobile-Code Style

  Summary: a data element (some representation of a
program) is dynamically transformed into a data
processing component.

  Components: “Execution dock”, which handles receipt of
code and state; code compiler/interpreter

  Connectors: Network protocols and elements for
packaging code and data for transmission.

  Data Elements: Representations of code as data;
program state; data

  Variants: Code-on-demand, remote evaluation, and
mobile agent.

46

Software Architecture: Foundations, Theory, and Practice	

Mobile Code LL

47

Scripting languages (i.e. JavaScript,
VBScript), ActiveX control,
embedded Word/Excel macros.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Implicit Invocation Style

  Event announcement instead of method invocation
  “Listeners” register interest in and associate methods with

events
  System invokes all registered methods implicitly

  Component interfaces are methods and events
  Two types of connectors

  Invocation is either explicit or implicit in response to
events

  Style invariants
  “Announcers” are unaware of their events’ effects
  No assumption about processing in response to events

48

Software Architecture: Foundations, Theory, and Practice	

Implicit Invocation (cont’d)

  Advantages
  Component reuse
  System evolution

 Both at system construction-time & run-time
  Disadvantages

  Counter-intuitive system structure
  Components relinquish computation control to the

system
  No knowledge of what components will respond to

event
  No knowledge of order of responses

49

Software Architecture: Foundations, Theory, and Practice	

Publish-Subscribe

 Subscribers register/deregister to receive specific
messages or specific content. Publishers broadcast
messages to subscribers either synchronously or
asynchronously.

50

Software Architecture: Foundations, Theory, and Practice	

Publish-Subscribe (cont’d)

  Components: Publishers, subscribers, proxies for managing
distribution

  Connectors: Typically a network protocol is required.
Content-based subscription requires sophisticated connectors.

  Data Elements: Subscriptions, notifications, published
information

  Topology: Subscribers connect to publishers either directly or
may receive notifications via a network protocol from
intermediaries

  Qualities yielded Highly efficient one-way dissemination of
information with very low-coupling of components

51

Software Architecture: Foundations, Theory, and Practice	

Pub-Sub LL

52

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Event-Based Style

  Independent components asynchronously emit and receive
events communicated over event buses

  Components: Independent, concurrent event generators and/
or consumers

  Connectors: Event buses (at least one)
  Data Elements: Events – data sent as a first-class entity over

the event bus
  Topology: Components communicate with the event buses,

not directly to each other.
  Variants: Component communication with the event bus may

either be push or pull based.
  Highly scalable, easy to evolve, effective for highly distributed

applications. 53

Software Architecture: Foundations, Theory, and Practice	

Event-based LL

54

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Peer-to-Peer Style

  State and behavior are distributed among peers
which can act as either clients or servers.

  Peers: independent components, having their own
state and control thread.

  Connectors: Network protocols, often custom.
  Data Elements: Network messages

55

Software Architecture: Foundations, Theory, and Practice	

Peer-to-Peer Style (cont’d)

  Topology: Network (may have redundant connections
between peers); can vary arbitrarily and dynamically

  Supports decentralized computing with flow of
control and resources distributed among peers.
Highly robust in the face of failure of any given node.
Scalable in terms of access to resources and
computing power. But caution on the protocol!

56

Software Architecture: Foundations, Theory, and Practice	

Peer-to-Peer LL

57

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of DSSAs and Patterns in Software
architecture, and apply common patterns to problems

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

  Understand the challenges around greenfield design
58

Software Architecture: Foundations, Theory, and Practice	

Heterogeneous Styles

  More complex styles created through composition of
simpler styles

  REST (from the first lecture)
  Complex history presented later in course

  C2
  Implicit invocation + Layering + other constraints

  Distributed objects
  OO + client-server network style

59

Software Architecture: Foundations, Theory, and Practice	

C2 Style

 An indirect invocation style in which independent
components communicate exclusively through
message routing connectors. Strict rules on
connections between components and connectors
induce layering.

60

Software Architecture: Foundations, Theory, and Practice	

C2 Style (cont’d)
  Components: Independent, potentially concurrent

message generators and/or consumers
  Connectors: Message routers that may filter,

translate, and broadcast messages of two kinds:
notifications and requests.

  Data Elements: Messages – data sent as first-class
entities over the connectors. Notification messages
announce changes of state. Request messages
request performance of an action.

  Topology: Layers of components and connectors,
with a defined “top” and “bottom”, wherein
notifications flow downwards and requests upwards.

61

Software Architecture: Foundations, Theory, and Practice	

C2 LL

62

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

KLAX

63

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

KLAX in
C2

64

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Distributed Objects: CORBA

  “Objects” (coarse- or fine-grained) run on heterogeneous hosts,
written in heterogeneous languages. Objects provide services
through well-defined interfaces. Objects invoke methods across
host, process, and language boundaries via remote procedure calls
(RPCs).

  Components: Objects (software components exposing services
through well-defined provided interfaces)

  Connector: (Remote) Method invocation
  Data Elements: Arguments to methods, return values, and

exceptions
  Topology: General graph of objects from callers to callees.
  Additional constraints imposed: Data passed in remote procedure

calls must be serializable. Callers must deal with exceptions that can
arise due to network or process faults.

65

Software Architecture: Foundations, Theory, and Practice	

CORBA Concept and
Implementation

66

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Style Summary (1/4)

67

Software Architecture: Foundations, Theory, and Practice	

Style Summary, continued (2/4)

68

Software Architecture: Foundations, Theory, and Practice	

Style Summary, continued (3/4)

69

Software Architecture: Foundations, Theory, and Practice	

Style Summary, continued (4/4)

70

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of DSSAs and Patterns in Software
architecture, and apply common patterns to problems

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

  Understand the challenges around greenfield design
71

Software Architecture: Foundations, Theory, and Practice	

Google-like problem: process a huge

collection of documents (Web-pages)

  [Distributed] Grep: Produce a list of
documents that contain a certain word.

  Count of URL Access Frequency: Process
logs of web page requests and output the
number of times each of them has been
accessed.

  Reversed Web-Link Graph: For a list of web
pages produce the set of links that point to
these pages.

  Term-Vector per Host: A N-term vector
summarizes the most N frequent words that
occur in a document or a set of documents as a
list of <word, frequency> pairs. The goal is to
produce the term vector for all domain hosts.

  Inverted Index: For each word, produce the
list of documents where it appears.

Common styles
 Traditional, language-

influenced
  Main program and

subroutines
  Object-oriented

 Layered
  Virtual machines
  Client-server

 Data-flow styles
  Batch sequential
  Pipe and filter

 Shared-state
  Blackboard
  Rule based

 Interpreter
  Interpreter
  Mobile code

 Implicit invocation
  Event-based
  Publish-subscribe

 Peer-to-peer

Software Architecture: Foundations, Theory, and Practice	

When There’s No Experience to Go On…

  The first effort you should make in addressing a novel
design challenge is to attempt to determine that it is
genuinely a novel problem.

  Basic Strategy
  Divergence – shake off inadequate prior approaches and

discover/admit a variety of new ideas that offer a potentially
workable solution

  Transformation – combine analysis and selection of these
potential ides. New understanding and changes to the problem
statement

  Convergence – select and further refine ideas

  Repeatedly cycling through the basic steps until a
feasible solution emerges.

73

Software Architecture: Foundations, Theory, and Practice	

Analogy Search

  Examine other fields and disciplines unrelated to the
target problem for approaches and ideas that are
analogous to the problem.

  Formulate a solution strategy based upon that analogy.
  A common “unrelated domain” that has yielded a variety

of solutions is nature, especially the biological sciences.
  E.g., neural networks

74

Software Architecture: Foundations, Theory, and Practice	

Brainstorming
  Technique of rapidly generating a wide set of ideas and

thoughts pertaining to a design problem
  without (initially) devoting effort to assessing the feasibility.

  Brainstorming can be done by an individual or, more
commonly, by a group.

  Problem: A brainstorming session can generate a large
number of ideas… all of which might be low-quality.

  Chief value: identifying categories of possible designs, not any
specific design solution suggested during a session.

75

Software Architecture: Foundations, Theory, and Practice	

“Literature” Search

  Examining published information to identify material that
can be used to guide or inspire designers

  Digital library collections make searching much faster
and more effective
  IEEE Xplore
  ACM Digital Library
  Google Scholar

  The availability of free and open-source software adds
special value to this technique.

76

Software Architecture: Foundations, Theory, and Practice	

Morphological Charts
  The essential idea:

  identify all the primary functions to be performed by the desired
system

  for each function identify a means of performing that function
  attempt to choose one means for each function such that the

collection of means performs all the required functions in a
compatible manner.

  The technique does not demand that the functions
be shown to be independent when starting out.

  Sub-solutions to a given problem do not need to be
compatible with all the sub-solutions to other
functions in the beginning.

77

Software Architecture: Foundations, Theory, and Practice	

Removing Mental Blocks

  If you can’t solve the problem, change the problem to
one you can solve.
  If the new problem is “close enough” to what is needed, then

closure is reached.
  If it is not close enough, the solution to the revised problem may

suggest new venues for attacking the original.

78

Software Architecture: Foundations, Theory, and Practice	

Controlling the Design Strategy

  Exploring diverse approaches
  Potentially chaotic
   care in managing the activity

  Identify and review *critical* decisions
  Relate the costs of research and design to the penalty

for taking wrong decisions
  Insulate uncertain decisions
  Continually re-evaluate system “requirements” in light of

what the design exploration yields

79

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of DSSAs and Patterns in Software
architecture, and apply common patterns to problems

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

  Apply styles in Greenfield design
80

