
www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 106–126
A general model of software architecture design derived
from five industrial approaches

Christine Hofmeister a, Philippe Kruchten b,*, Robert L. Nord c, Henk Obbink d,
Alexander Ran e, Pierre America d

a Lehigh University, Bethlehem, PA, USA
b University of British Columbia, 2332 Main Mall, Vancouver, BC, Canada V6T 1Z4

c Software Engineering Institute, Pittsburgh, PA, USA
d Philips Research Labs, Eindhoven, The Netherlands

e Nokia Research Center, Cambridge, MA, USA

Received 1 January 2006; received in revised form 8 May 2006; accepted 12 May 2006
Available online 5 July 2006
Abstract

We compare five industrial software architecture design methods and we extract from their commonalities a general software archi-
tecture design approach. Using this general approach, we compare across the five methods the artifacts and activities they use or recom-
mend, and we pinpoint similarities and differences. Once we get beyond the great variance in terminology and description, we find that
the five approaches have a lot in common and match more or less the ‘‘ideal’’ pattern we introduced. From the ideal pattern we derive an
evaluation grid that can be used for further method comparisons.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Software architecture; Software architecture design; Software architecture analysis; Architectural method
1. Introduction

Over the last 15 years a number of organizations and indi-
vidual researchers have developed and documented tech-
niques, processes, guidelines, and best practices for
software architecture design (Bass et al., 2003; Bosch,
2000; Clements et al., 2002a; Clements and Northrop,
2002; Dikel et al., 2001; Garland and Anthony, 2002;
Gomaa, 2000). Some of these were cast and published as
architecture design methods or systems of concepts, pro-
cesses and techniques for architecture design (Hofmeister
et al., 1999; Kruchten, 2003; Obbink et al., 2000; Ran, 2000).
0164-1212/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2006.05.024

* Corresponding author. Tel.: +1 604 827 5654.
E-mail addresses: crh@eecs.lehigh.edu (C. Hofmeister), pbk@ece.ubc.-

ca (P. Kruchten), rn@sei.cmu.edu (R.L. Nord), henk.obbink@philips.com
(H. Obbink), alexander.ran@nokia.com (A. Ran), pierre.america@phi-
lips.com (P. America).
Since many of the design methods were developed inde-
pendently, their descriptions use different vocabulary and
appear quite different from each other. Some of the differ-
ences are essential. Architecture design methods that were
developed in different domains naturally exhibit domain
characteristics and emphasize different goals. For example
architectural design of information systems emphasizes
data modeling, and architecture design of telecommunica-
tion software emphasizes continuous operation, live upgrade,
and interoperability. Other essential differences may include
methods designed for large organizations vs. methods suit-
able for a team of a dozen software developers, methods
with explicit support for product families vs. methods for
one of a kind systems, etc.

On the other hand, all software architecture design meth-
ods must have much in common as they deal with the same
basic problem: maintaining intellectual control over the
design of software systems that: require involvement of

mailto:crh@eecs.lehigh.edu
mailto:pbk@ece.ubc.ca
mailto:pbk@ece.ubc.ca
mailto:rn@sei.cmu.edu
mailto:henk.obbink@philips.com
mailto:alexander.ran@nokia.com
mailto:pierre.america@philips.com
mailto:pierre.america@philips.com

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 107
and negotiation among multiple stakeholders; are often
developed by large, distributed teams over extended periods
of time; must address multiple possibly conflicting goals
and concerns; and must be maintained for a long period
of time. It is thus of significant interest to understand the
commonalities that exist between different methods and to
develop a general model of architecture design. Such a
model would help us better understand the strengths and
weaknesses of different existing methods as well as provide
a framework for developing new methods better suited to
specific application domains.

With this goal in mind, we selected five different meth-
ods: Attribute-Driven Design (ADD) Method (Bass
et al., 2003), developed at the SEI; Siemens’ 4 Views
(S4V) method (Hofmeister et al., 1999), developed at Sie-
mens Corporate Research; the Rational Unified Process�

4 + 1 views (RUP 4 + 1) (Kruchten, 1995, 2003) developed
and commercialized by Rational Software, now IBM;
Business Architecture Process and Organization (BAPO)
developed primarily at Philips Research (America et al.,
2003; Obbink et al., 2000), and Architectural Separation of
Concerns (ASC) (Ran, 2000) developed at Nokia Research.
We also assembled a team of people who have made signif-
icant contributions to developing and documenting at least
one of the methods. Through extensive discussions focused
on how typical architecture design tasks are accomplished
by different methods, we have arrived at a joint under-
standing of a general software architecture design model
that underlies the five methods. In this paper we document
our understanding of what seems to be fundamental about
architecture design.1

This paper is organized as follows. We introduce the five
contributing methods in Section 2. Then in Section 3 we
present a general model of architecture design. Section 4
describes the five contributing methods using terms and
concepts of the general model, and discusses the common-
alities and differences between the contributing methods.
Section 5 describes how other software architecture meth-
ods can be compared against the general model using a
grid, and applies the grid to another published method.
Section 6 discusses related work, Section 7 proposes future
work, and Section 8 concludes the paper.
2. Five industrial software architecture design methods

2.1. Attribute-Driven Design

The Attribute-Driven Design (ADD) method (Bass
et al., 2003), developed at the SEI, is an approach to defin-
ing software architectures by basing the design process on
the architecture’s quality attribute requirements.

In ADD, architectural design follows a recursive decom-
position process where, at each stage in the decomposition,
1 A shorter version of this work was presented at WICSA (Hofmeister
et al., 2005a).
architectural tactics and patterns are chosen to satisfy a set
of quality attribute scenarios (see Fig. 1). The architecture
designed using the ADD method represents the high-level
design choices documented as containers for functionality
and interactions among the containers using views. The
nature of the project determines the views; most commonly
one or more of the following are used: a module decompo-
sition view, a concurrency view, and a deployment view.
The architecture is critical for achieving desired quality
and business goals, and providing the framework for
achieving functionality.

Architects use the following steps when designing an
architecture using the ADD method:

1. Choose the module to decompose. The module to start
with is usually the whole system. All required inputs
for this module should be available (constraints, func-
tional requirements, quality requirements)

2. Refine the modules according to these steps:
a. Choose the architectural drivers from the set of con-

crete quality scenarios and functional requirements.
This step determines what is important for this
decomposition.

b. Choose an architectural pattern that satisfies the driv-
ers. Create (or select) the pattern based on the tactics
that can be used to achieve the drivers. Identify child
modules required to implement the tactics.

c. Instantiate modules and allocate functionality from
use cases, and represent the results using multiple
views.

d. Define interfaces of the child modules. The decompo-
sition provides modules and constraints on the types
of module interactions. Document this information
in the interface document of each module.

e. Verify and refine the use cases and quality scenarios
and make them constraints for the child modules.
This step verifies that nothing important was forgot-
ten and prepares the child modules for further decom-
position or implementation.
3. Repeat the steps above for every module that needs further

decomposition.

Fig. 2 shows how the ADD method fits together with the
other SEI architectural design activities. The Quality Attri-
bute Workshop (QAW) (Barbacci et al., 2003) helps in
understanding the problem by eliciting quality attribute
requirements in the form of quality attribute scenarios.
The Views and Beyond (VaB) approach (Clements et al.,
2002a) documents a software architecture using a number
of views based on stakeholders’ needs. The Architecture
Tradeoff Analysis Method� (ATAM�) (Clements et al.,
2002b) provides detailed guidance on analyzing the design
and getting early feedback on risks. The figure does not
show how these methods are used in the context of an orga-
nization’s own architecture process (see (Kazman et al.,
2004; Nord et al., 2004) for examples of relating ADD to
the Rational Unified Process� and Agile methods).

Fig. 1. Recursively designing the architecture using ADD.

Fig. 2. ADD in relation with other SEI architectural design activities.

108 C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126
2.2. Siemens’ 4 views

The Siemens Four-Views (S4V) method (Hofmeister
et al., 1999; Soni et al., 1995), developed at Siemens Corpo-
rate Research, is based on best architecture practices for
industrial systems. The four views (conceptual, execution,
module and code architecture view), separate different engi-
neering concerns, thus reducing the complexity of the
architecture design task.

In the conceptual view, the product’s functionality is
mapped to a set of decomposable, interconnected com-
ponents and connectors. Components are independently
executing peers, as are connectors. The primary engineer-
ing concerns in this view are to address how the system
fulfills the requirements. The functional requirements
are a central concern, including both the current require-
ments and anticipated future enhancements. Global
properties such as performance and dependability are
addressed here as well as in the execution view. The
system’s relationship to a product family, the use of COTS,
and the use of domain-specific hardware and/or software
are all addressed in the conceptual view as well as in the
module view.

For the module view, modules are organized into two
orthogonal structures: decomposition and layers. The
decomposition structure captures how the system is logi-
cally decomposed into subsystems and modules. A module
can be assigned to a layer, which then constrains its depen-
dencies on other modules. The primary concerns of this
view are to minimize dependencies between modules, max-
imize reuse of modules, and support testing. Another key
concern is to minimize the impact of future changes in

Organizational Factors
Technological Factors
Product Factors

Design and
Evaluation Tasks

Global
Analysis

Issue
Cards

new factors,
issues, or
strategies

Design of other
Architecture Views

Architecture View Design

Fig. 3. Workflow between Global Analysis and Architecture View Design.

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 109
COTS software, the software platform, domain-specific
hardware and software, and standards.

The execution architecture view describes the system’s
structure in terms of its runtime platform elements (e.g.,
OS tasks, processes, threads). The task for this view is
to assign the system’s functionality to these platform
elements, determine how the resulting runtime instances
communicate, and how physical resources are allocated
to them. Other considerations are the location, migration,
and replication of these runtime instances. Runtime prop-
erties of the system, such as performance, safety, and
replication must be addressed here.

The last view, the code architecture view, is concerned
with the organization of the software artifacts. Source com-
ponents implement elements in the module view, and
deployment components instantiate runtime entities in
the execution view. The engineering concerns of this view
are to make support product versions and releases, mini-
mize effort for product upgrades, minimize build time,
and support integration and testing.

These views are developed in the context of a recurring
Global Analysis activity (Hofmeister et al., 2005b). For
Global Analysis, the architect identifies and analyzes fac-
tors, explores the key architectural issues or challenges,
then develops design strategies for solving these issues.

The factors that influence the architecture are organized
into three categories: organizational, technological, and
product factors. The purpose of the categories is to help
the architect identify all influencing factors, including not
just requirements but also desired system qualities, organi-
zational constraints, existing technology, etc. These factors
are analyzed in order to determine which factors conflict,
what are their relative priorities, how flexible and stable
is each factor, what is the impact of a change in the factor,
and what are strategies for reducing that impact.

From these factors the key architectural issues or chal-
lenges are identified; typically they arise from a set of factors
that, taken together, will be difficult to fulfill. Issues can arise
when factors conflict, or when certain factors have little flex-
ibility, a high degree of changeability, or a global impact on
the system. The architect need not necessarily identify and
analyze all factors before identifying the key issues. Some-
times it is more fruitful to let an issue give rise to a number
of factors, or to alternate between these two approaches.

The next step is to propose design strategies to solve the
issues, and to apply the design strategies to one or more of
the views. Strategies often involve applying software engi-
neering principles, heuristics, and architectural patterns
or styles to solve the problem. When a strategy is applied
to a particular part of a view, we call it a ‘design decision’.

During design, the design decisions must be evaluated,
particularly for conflicts and unexpected interactions. This
evaluation is ongoing. Thus Global Analysis activities are
interleaved with view design activities, and the design activ-
ities of each view are also interleaved (see Fig. 3).

In contrast to the ongoing evaluation that is part of the
design process, periodic architecture evaluation is done in
order to answer a specific question, such as cost prediction,
risk assessment, or some specific comparison or tradeoff.
This typically involves other stakeholders in addition to
the architect. Global Analysis provides inputs to this kind
of architecture evaluation, for example: business drivers,
quality attributes, architectural approaches, risks, trade-
offs, and architectural approaches.

2.3. RUP’s 4 + 1 Views

The Rational Unified Process� (RUP�) is a software
development process developed and commercialized by
Rational Software, now IBM (Kruchten, 2003). For RUP
‘‘software architecture encompasses the set of significant
decisions about the organization of a software system:

• selection of the structural elements and their interfaces
by which a system is composed,

• behavior as specified in collaborations among those
elements,

• composition of these structural and behavioral elements
into larger subsystem,

• architectural style that guides this organization.

Software architecture also involves: usage, functionality,
performance, resilience, reuse, comprehensibility, economic
and technology constraints and tradeoffs, and aesthetic
concerns.’’ RUP defines an architectural design method,
using the concept of 4 + 1 views (RUP 4 + 1) (Kruchten,
1995): four views to describe the design: logical view, pro-
cess view, implementation view and deployment view, and
using a use-case view (+1) to relate the design to the
context and goals (see Fig. 4).

In RUP, architectural design is spread over several
iterations in an elaboration phase, iteratively populating
the 4 views, driven by architecturally significant use cases,
non-functional requirements in the supplementary specifi-
cation, and risks (see Fig. 5). Each iteration results in an
executable architectural prototype, which is used to validate
the architectural design.

Architectural design activities in RUP start with the fol-
lowing artifacts, which may not be finalized and still evolve

Logical View
Implementation

View

Process
View

Deployment
View

Use Case
View

Programmers
Software management

Performance
Scalability

System Integrators

End-user, designers
Functionality

System topology
Delivery, installation

Communication

System Engineering

Users/Analysts/Testers
Behavior

Logical View
Implementation

View

Process
View

Deployment
View

Use Case
View

Programmers
Software management

Performance
Scalability

System Integrators

End-user, designers
Functionality

System topology
Delivery, installation

Communication

System Engineering

Users/Analysts/Testers
Behavior

Fig. 4. RUP’s 4 + 1 views.

Business Use Cases

System Use Cases Scenarios

Classes Objects

Sources Processes

Processors

Low LevelLow Level

High LevelHigh Level

InstanceInstanceAbstractionAbstraction

Use-case view

Logical view

Deployment view

Process view
Implementation
or code view

Business Use Cases

System Use CasesSystem Use Cases ScenariosScenarios

ClassesClasses ObjectsObjects

Sources Processes

Processors

Low LevelLow Level

High LevelHigh Level

InstanceInstanceAbstractionAbstraction

Use-case view

Logical view

Deployment view

Process view
Implementation
or code view

Fig. 5. Iteratively populating the five views.

110 C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126
during the architectural design: a vision document, a use-
case model (functional requirements) and supplementary
specification (non-functional requirements, quality attri-
butes). The three main groups of activities are:

(1) Define a Candidate Architecture

This usually starts with a use-case analysis, focusing
on the use cases that are deemed architecturally sig-
nificant, and with any reference architecture the orga-
nization may reuse.
This activities leads to a first candidate architecture
that can be prototyped and used to further reason
with the architectural design, integrating more ele-
ments later on.

(2) Perform Architectural Synthesis

Build an architectural proof-of-concept, and assess its
viability, relative to functionality and to non-func-
tional requirements.

(3) Refine the Architecture

Identify design elements (classes, processes, etc.) and
integrate them in the architectural prototype
Identify design mechanisms (e.g., architectural pat-
terns and services), particular those that deal with
concurrency, persistency, distribution.
Review the architecture.
And the RUP also provides activities related to the doc-
umentation of the architecture in each of the 5 views shown
in Fig. 4.

More recently (Rozanski and Woods, 2005) have added
perspectives to RUP’s views and viewpoints, to more effec-
tively capture certain quality properties, in a way similar to
architectural aspects or SEI’s tactics (Bass et al., 2003).
2.4. Business architecture process and organization

The BAPO/CAFCR approach (America et al., 2003;
Muller, 2005; Obbink et al., 2000; van der Linden et al.,
2004), developed primarily by Philips Research, aims at
developing an architecture (the A in BAPO) for software-
intensive systems that fits optimally in the context of busi-
ness (B), (development) process (P), and organization (O).
Ideally the entities at the right side of the BAPO acronym
should be driven by and support the entities at their left
(see Fig. 6), even though this does not always work in prac-
tice, so that the architecture must fit into a given context of
business, process, and organization.

For the architecture, the five CAFCR views are defined:
Customer, Application, Functional, Conceptual, and Real-
ization. These views bridge the gap between customer
needs, wishes, and objectives on the one hand and techno-
logical realization on the other hand.

In BAPO/CAFCR, the architect iteratively: (1) fills in
information in one of the CAFCR views, possibly in the
form of one of the suggested artifacts; (2) analyzes a partic-
ular quality attribute across the views to establish a link
between the views and with the surrounding business,
processes and organization (see Fig. 7). To counteract the
tendency towards unfounded abstraction, specific details
are often explored by story telling. The reasoning links
valuable insights across the different views to each other.
The architecture is complete when there is sufficient infor-
mation to realize the system and the quality attribute
analysis shows no discrepancies.

At a larger scale, the processes described in the BAPO/
CAFCR approach deal with the development of a product
family in the context of other processes in a business.
2.5. Architectural separation of concerns

Architectural separation of concerns (ASC) or ARES
System of Concepts (Ran, 2000), developed primarily by
Nokia, is a conceptual framework based on separation of
concerns to manage complexity of architecture design.

Fig. 8 illustrates the ASC model of architecture-centered
development. Development goals affect architectural deci-
sions. Architectural decisions are represented by architec-
ture descriptions. Architecture descriptions are used to
verify architectural decisions. Architecture description
and implementation must be consistent. A validation pro-
cess exists to determine consistency of architecture and
implementation. Information regarding achievement of

explore
specific details

submethods

and artifacts

framework

integration

via qualities

reasoning

story
use
caseanalyse

design

detailed
designanalyse

design

a priori solution know-howmarket
vision

safety

performance

+ key drivers
+ value chain
+ business models
+ supplier map

+ stakeholders
and concerns

+ context diagram
+ entity relationship

models
+ dynamic models

+ use case
+ commercial, logistics

decompositions
+ mapping technical

functions
and several more

+ construction
decomposition

+ functional
decomposition

+ information model
and many more

+ budget
+ benchmarking
+ performance

analysis
+ safety analysis
and many more

Customer Application Functional Conceptual Realization

method outline method visualization

throughput processing
library

diagnostic
quality

image
quality IQ spec

pixel
depth

CPU
budget

typical
case

common
console

memory
limit

BoM Moore's
law

purchase
price

CoO

render
engine

M'

S

M

B

U"

P'

T

U

U' P

profit margin
standard workstation

memory budget

Fig. 7. Elements of the CAFCR method.

B
Business

A
Architecture

P
Process

O
Organization

commercial views

technical views

C
Conceptual

View

R
Realization

View

F
Functional

View

A
Application

View

C
Customer

View

Responsibility:
product

Responsibility:
family architectureResponsibility:

reusable assets

Policy and
Planning

Technology
and People

Management

Customer
Oriented
Process

Product
Family

Engineering

Platform
Engineering

Product
Engineering

Fig. 6. The BAPO/CAFCR framework.

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 111
development goals is obtained once the implementation is
available.

Stakeholder goals need to be analyzed and if determined
to have an effect on software architecture, the goals need to
be refined into architecturally significant requirements
(ASR) that state how to measure the achievement of the
goal and indicate how the goal constrains software
architecture.

Software goes through a transformation cycle that con-
sists of separate segments. During the design or develop-
ment segment, the software is source code. During the
build segment the software is object files and library

Architecture
Description

Goals

Architectural
Decisions

Implementation

affect achieve

consistency
validation

representation
verification

Evaluation

Fig. 8. A model of architecture-centered software development.

112 C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126
archives. During the upgrade segment the software consists
of executable files. During the start-up segment the soft-
ware is system state and groups of executable entities with
their dependency structure. During the operation segment
software is threads and objects.

Architecturally significant requirements must be grouped
so that requirements in different groups may be satisfied
independently, while requirements within each group may
interact and even conflict. This can be achieved if we group
the requirements by the segment of software transformation
cycle. Architectural concerns that are related to different
segments of the software transformation cycle can be
addressed independently, while concerns that are related
to the same segment cannot be addressed independently
and must be a subject of trade-off decisions.

Fig. 9 illustrates the separation of architectural concerns
based on different segments of software transformation
cycle.

In addition to design of architectural structures for
each segment, ASC pays special attention to design of tex-
ture. Certain design decisions that are only visible within
relatively fine-grained components are nevertheless extre-
Architecturally
Significant

Requirements

Significant
Segments

Component
Domains

Concepts
Structure
Texture

Architecturally
Significant
Decisions

Satisfy

Grouped by Associated with

Organized by

Represent

Fig. 9. Segmentation of concerns.
mely expensive to revise. Consequently such decisions
are architecturally significant even though they are con-
cerned with fine-grained elements. This happens when
the implementation of the decision cannot be localized,
but must be replicated creating recurring uniform micro-
structure or texture.

In ASC, the architect analyses design inputs, such as
preferred technology platforms, road maps, functional
and quality requirements for the product family and the
product, and using a palette of techniques, produces and
prioritizes ASR (architecturally significant requirements),
groups ASR by segments of the software transformation
cycle that they address. Implementation (write-time) design
addresses the ASR concerned with the write-time segment.
Design decisions make implementation technology choices,
partition functional requirements between different
architectural scopes of product portfolio, product family,
or single product, establish portability layers for multiplat-
form products, allocate classes of functional requirements
to different subsystems, and develop description of the API
facilitating work division and outsourcing. Performance
(run-time) design deals with run-time ASR addressing
concurrency and protection, develops performance models
and makes decisions regarding task and process partitions,
scheduling policies, resource sharing and allocation.
Finally, delivery/installation/upgrade design decisions
address the ASR of the corresponding segments. Typical
decisions address partitions into separately loadable/exe-
cutable units, installation support, configuration data,
upgrade/downgrade policies and mechanisms, manage-
ment of shared components, external dependencies and
compatibility requirements.

3. A general model for software architecture design

The general model for software architecture design we
developed first classifies the kinds of activities performed
during design. Architectural analysis articulates architec-
turally significant requirements (ASRs) based on the archi-
tectural concerns and context. Architectural synthesis
results in candidate architectural solutions that address
these requirements. Architectural evaluation ensures that
the architectural decisions used are the right ones (see
Fig. 10).

Because of the complexity of the design task, these activ-
ities are not executed sequentially. Instead they are used
repeatedly, at multiple levels of granularity, in no predict-
able sequence, until the architecture is complete and vali-
dated. Thus the second part of the general model is a
characterization of its workflow.

The key requirement of our model was that it be general
enough to fit our five architecture design methods, and pro-
vide a useful framework for comparing them. One strong
influence on the activities in our model was Gero’s Func-
tion–Behavior–Structure framework for engineering design
(Gero, 1990; Gero and Kannengiesser, 2004), which
Kruchten applies to software design in Kruchten (2005).

Fig. 10. Architectural design activities.

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 113
3.1. Architectural design activities and artifacts

First we describe the main activities of the model, and
their related artifacts.

• Architectural concerns: The IEEE 1471 standard defines
architectural concerns as ‘‘those interests which per-
tain to the system’s development, its operation or any
other aspects that are critical or otherwise important
to one or more stakeholders. Concerns include system
considerations such as performance, reliability, security,
distribution, and evolvability’’ (IEEE, 2000). Most
architectural concerns are expressed as requirements
on the system, but they can also include mandated
design decisions (e.g., use of existing standards). Regula-
tory requirements may also introduce architectural
concerns.

• Context: According to IEEE 1471, ‘‘a system’s . . . envi-
ronment, or context, determines the setting and circum-
stances of developmental, operational, political, and
other influences upon that system’’ (IEEE, 2000). This
includes things like business goals (e.g., buy vs. build),
characteristics of the organization (e.g., skills of devel-
opers, development tools available), and the state of
technology. Note that sometimes the only distinction
between a concern and a context is whether it is specif-
ically desired for this system (a concern) or is instead a
general characteristic or goal of the organization or a
stakeholder (context). For example, a business goal of
the architecture is a concern, whereas a business goal
of the enterprise is context.

• Architecturally significant requirements: An ASR is ‘‘a
requirement upon a software system which influences
its architecture’’ (Obbink et al., 2002). Not all of the sys-
tem’s requirements will be relevant to the architecture.
Conversely, not all ASRs will have originally been
expressed as requirements: they may arise from other
architectural concerns or from the system context.

• Architectural analysis: Architectural analysis serves to
define the problems the architecture must solve. This
activity examines, filters, and/or reformulates architec-
tural concerns and context in order to come up with a
set of ASRs.
• Candidate architectural solutions: Candidate architec-
tural solutions may present alternative solutions, and/
or may be partial solutions (i.e., fragments of an archi-
tecture). They reflect design decisions about the struc-
ture of software. The architectural solutions include
information about the design rationale, that is, commen-
tary on why decisions where made, what decisions were
considered and rejected, and traceability of decisions to
requirements.

• Architectural synthesis: Architectural synthesis is the
core of architecture design. This activity proposes archi-
tecture solutions to a set of ASRs, thus it moves from
the problem to the solution space.

• Validated architecture: The validated architecture con-
sists of those candidate architectural solutions that are
consistent with the ASRs. These solutions must also
be mutually consistent. Only one of a set of alternative
solutions can be present in the validated architecture.
The validated architecture, like the candidate architec-
tural solutions, includes information about the design
rationale.

• Architectural evaluation: Architectural evaluation
ensures that the architectural design decisions made
are the right ones. The candidate architectural solutions
are measured against the ASRs. Although repeated eval-
uations of different architectural solutions are expected,
the eventual result of architectural evaluation is the
validated architecture. Intermediate results would be
the validation or invalidation of candidate architectural
solutions.

In addition to the above-described artifacts used in the
design activities, there are some less explicit inputs that
are critical to the design process:

• Design knowledge comes from the architect, from orga-
nizational memory, or from the architecture commu-
nity. It can take the form of styles, patterns,
frameworks, reference architectures, ADLs, product-
line technologies, etc.

• Analysis knowledge is needed to define the problem and
evaluate the solution. Some work exists in analysis pat-
terns (Fowler, 1997) and analytic models associated with

114 C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126
design fragments (Bachmann et al., 2002). Knowledge of
the evaluation process itself (e.g., workflow, methods
and techniques) (Obbink et al., 2002) can also be an
important input.

• Realization knowledge (e.g., technologies, components,
project management) is critical. In many cases analysis
knowledge is not sufficient to evaluate the architecture.
One example is when a partial implementation is needed
upon which to do experimentation. In general the design
must be evaluated using realization knowledge, in order
to ensure that the system can be built.

3.2. Workflow and the concept of backlog

In all five of the architectural methods on which our model
is based, the three main activities in Fig. 9 (architectural anal-
ysis, architectural synthesis, and architectural evaluation) do
not proceed sequentially, but rather proceed in small leaps
and bounds as architects move constantly from one to
another, ‘‘growing’’ the architecture progressively over time.
This is primarily because it is not possible to analyze, resolve,
find solutions and evaluate the architecture for all architec-
tural concerns simultaneously: the range and number of
interrelated issues is just too overwhelming for the human
mind, and moreover the inputs (goals, constraints, etc) are
usually ill-defined, initially, and only get discovered or better
understood as the architecture starts to emerge.

To drive this apparently haphazard process, architects
maintain, implicitly or explicitly, a backlog of smaller
needs, issues, problems they need to tackle, as well as ideas
they might want to use. The backlog drives the workflow,
helping the architects determine what to do next. It is not
Fig. 11. Maintaining an a
an externally visible, persistent artifact; on small projects
it may only be a list in the architect’s notebook, while for
larger projects it might be an electronic, shared spread-
sheet. See Fig. 11. It is therefore rarely explicitly described
in software architectural methods, but we have found it to
be actually present in all the methods we have studied,
under some name or another, e.g., ‘‘worry list’’ in BAPO,
‘‘issue list’’ in RUP.

The backlog is constantly fed by

(a) selecting some architectural concern and/or ASR
from architectural analysis,

(b) negative feedback in the form of issues or problems
arising from architectural evaluation, and to a lesser
extent,

(c) ideas from the architect’s experience, discussions,
readings, etc.

A backlog item can be thought of as a statement of the
form:

• ‘‘We need to make a decision about X.’’
• or ‘‘We should look at Y in order to address Z.’’

This backlog is constantly prioritized, bringing to the
front the items that seem most urgent. The tactics for pri-
oritization will vary, mostly based on external forces. These
forces include risks to mitigate, upcoming milestones, team
pressure to start work on a part of the system, or simply
perception of greater difficulty. Very often it is simply the
need to relieve pressure from a stakeholder that drives an
item to the top of the backlog (the ‘‘squeaky wheel’’
phenomenon).
rchitectural backlog.

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 115
Once a backlog item (or a small set of backlog items) is
picked by the architects, they will proceed to incrementally
perform architectural synthesis, making some design deci-
sions and integrating them with the existing set of design
decisions. Thus the front of the backlog serves to set the
objectives for a particular iteration of architectural synthe-
sis. Less frequently, backlog items will drive architectural
analysis or architectural evaluation. Once resolved in any
way (issues resolved, idea explored, requirement satisfied,
risk removed, etc.), the item is removed from the backlog,
and the architects proceed to the next one. If they encoun-
ter some difficulty or some input is missing, the item is
returned to the backlog.

Thus the backlog is constantly changing. The cycle of
adding to the backlog, reprioritizing, resolving an item,
and removing an item is happening at various periods:
from a few hours, to a few days, or more.

This backlog is similar to what some Agile methods use
for driving projects, in particular Scrum (Schwaber and
Beedle, 2002), and this is where the name came from.
The backlog guides the architectural design workflow
through the three main kinds of activities and provides
the objectives for each iteration through the synthesis activ-
ity. The kind of tools architects may use for the backlog
range from informal lists, to shared spreadsheets, to wiki-
based tracking tools such as Trac.

4. Method comparison using the general model

The five architectural methods have been developed
independently but there are many commonalities among
them.

4.1. Side-by-side comparison

See Tables 1 and 2 for a comparison of activities and
artifacts. Putting the methods side by side, helps to identify
and understand this commonality as well as the important
differences. The rows of the table are based on the activities
and artifacts identified in the general model of the previous
section.

This comparison has been an iterative process of pro-
ducing a common model of design activities and artifacts,
seeing how well they relate to the methods, and adjusting
the model. Rather than focusing just on the creation
of the architectural solution, which is the synthesis activity,
the model takes a broad view of architectural design by
addressing the interrelated activities of analysis, synthesis,
and evaluation.

The steps of ADD follow the sequence of analysis, syn-
thesis, and evaluation activities. Subsequent iterations of
the activities follow the decomposition of the architecture
– the order of which will vary (e.g., depth-first, breadth-
first) based on the business context, domain knowledge,
or technology.

Global Analysis from S4V plays a large role in analysis
and in driving iterations through the activities. Thus it
spans architectural analysis, architectural synthesis, the
backlog, and describes how architectural concerns, context,
ASRs, and some backlog items should be recorded. The
Global Analysis artifacts, design decision table, and tables
that record the relationships among views support trace-
ability from requirements to the code (at the file and mod-
ule level).

4.2. Commonalities

Elements the methods have in common include:

• an emphasis on quality requirements and the need to aid
the architect in focusing on the important requirements
that impact the architecture during analysis,

• design elements organized into multiple views during
synthesis,

• and an iterative fine-grained evaluation activity (per-
formed internally after each synthesis result by the
architect) as distinct from course-grained evaluation
(architectural reviews performed at key stages in the
software development lifecycle).

4.2.1. Common theme: dealing with quality requirements

Architecture design is often driven by quality or non-
functional requirements. Since most operations of the sys-
tem involve multiple components, the quality of operations
cannot be guaranteed by the design of a single or a small
group of components. Therefore architecture is in practice
the only means to systematically address quality require-
ments. In this respect it is interesting to review how the
five methods we discuss in this paper address quality
requirements.

In RUP non-functional requirements are captured in
supplementary specifications. These specifications are
taken into consideration during each of the iterations.
However the most important stage is often during the ini-
tial iteration when the major architectural structure is
established. Non-functional requirements play an impor-
tant role at this stage because the selection of the main
architectural structure is mainly driven by non-functional
requirements. Once an executable prototype becomes avail-
able, the capability of the system to address the non-func-
tional requirements is assessed and when improvement is
necessary further iterations are planned. Perspectives are
a recent addition to RUP that help the architect address
non-functional requirements (Rozanski and Woods,
2005). Perspectives are views that bring together different
elements of design that affect a particular domain of con-
cerns. Common domains of concerns are security, data
integrity, availability, etc.

ADD uses quality requirements or quality attributes as
the driving force for architecture design. ADD relies on a
repository of architectural patterns and tactics to address
the non-functional requirements. ADD follows a recursive
process of hierarchical decomposition of the system. At

Table 1
Comparing methods: activities

Activity ADD S4V RUP 4 + 1 BAPO/CAFCR ASC

Architectural
analysis

Choose the module to decompose (Step 1)
determines the context and architectural
concerns that will be addressed

Global Analysis involves
(1) identifying influencing
factors; (2) analyzing them
to identify their importance
to the architecture, flexibility,
and changeability; (3)
identifying key issues or
problems that arise
from a set of factors

Build or extract a subset
of the use case model
and the supplementary
specification, as key
drivers for architectural
design

BAPO analysis identifies
those elements of context
that are relevant for the
architectural fit and
determine the scope of the
architecture. These elements
are already entered into the
various artifacts in the CAFCR
views. Strategic scenarios can
be used to explore multiple
possible futures and their
impact on business and architecture

Concept definition, identification
and refinement of ASR, partition
of ASR by software segments:
runtime, development, load, etc.
Thus analysis results in a collection
of semi separable problems

Choose the architectural drivers

(Step 2a) looks for the
combination of functional
and quality requirements
that ‘‘shape’’ the architecture.
The QAW and quality attribute
models help elicit and structure
the requirements
as needed

Architectural
synthesis

Synthesis is iterative as drivers
are considered and the candidate
architectural solution evolves

The fourth part of Global
Analysis, identifying
solution strategies, is the
beginning of arch. synthesis.
Then strategies are
instantiated as design
decisions that determine
the number and type of
design elements for one
of the software architecture
views. Design decisions can
be captured in a table

During the elaboration
phase, incrementally
build an architecture
organized along 4
different views; in
parallel implement
an architectural prototype

Iteratively elaborate the five CAFCR
views, adding or refining artifacts
suitable for the particular system.
No particular order is prescribed.
Often a particular quality attribute
is ‘‘chased’’ through the different
views. Architecture scenarios
are defined as responses to
the strategic scenarios

Address the ASR, segment by
segment in an iterative process,
resolving conflicts between the
ASR within the same segment
and integrating solutions from
different segments

This takes place in two parts.
In the first part, Choose an

architectural pattern that

satisfies the architectural drivers

(Steps 2b) architectural tactics
and patterns determine the
structure of the solution
In the second part, Instantiate

modules (Step 2c) and Define

interfaces (Step 2d) the
decomposition is documented
and remaining requirements
allocated to the structure

Architectural
evaluation

Verify and refine use cases and

quality scenarios (Step 2e) verifies
the decomposition can collectively
satisfy the requirements
and prepares the child modules
for their own decomposition,
preparing for the next iteration
of ADD. A given quality
scenario might not be satisfied
by the current decomposition.
If it is high priority, reconsider
the current decomposition.
Otherwise record the rationale
for why it is not supported
(e.g., because of a justified
tradeoff between quality attributes)

S4V splits evaluation into
global evaluation (done
by the architect as the
design progresses) and
architecture evaluation,
led by a team of external
reviewers, and done at
major checkpoints (e.g.,
to validate arch. concepts
and after design is complete)

Build an executable
prototype architecture
to assess whether
architectural objectives
have been met, and risks
retired (elaboration phase)

The CAFCR views are
evaluated in the BAPO
context to see whether
they fit. Furthermore
quality attributes are
analyzed across the CAFCR
views to determine whether
the solutions in the technical
views satisfy the requirements
from the commercial views

Architectural decisions are
evaluated with respect to ASR
that they address. Typical
procedure of evaluation may
nclude model-based analysis
(LQN, Petri nets, Q nets)
simulation, prototyping, and
discussion of change/use scenarios

116
C

.
H

o
fm

eister
et

a
l.

/
T

h
e

J
o

u
rn

a
l

o
f

S
y

stem
s

a
n

d
S

o
ftw

a
re

8
0

(
2

0
0

7
)

1
0

6
–

1
2

6

Table 2
Comparing methods: artifacts

Artifact ADD S4V RUP 4 + 1 BAPO/CAFCR ASC

Architectural
concerns

Functional requirements,
system quality attribute
requirements, design
constraints (requirements
for which the design
decisions are prespecified)

Influencing factors are orga-
nizational, technological, and
product factors. Product
factors, describing required
characteristics of the product,
are always architectural
concerns, so are technological
factors (state of technology
including standards) that
could affect the product

Vision document,
Supplementary
specification (for
non-functional
requirements);
the Risk List identifies,
among others, technical
issues: elements that are
novel, unknown, or just
perceived as challenging

These concerns are expressed
in the Customer and
Application views. The
overriding meta-concern
is bridging the gap between
customer needs, wishes, and
objectives and technological
realization

Each product family has lists
of typical concerns that need
to be addressed by products
in the domain. Stakeholders
contribute product specific
concerns during product
conception phase

Context Business quality goals
(e.g., time to market,
cost and benefit), architecture
qualities (e.g., conceptual
integrity, buildability),
system constraints

Organizational factors
(see above) are usually
context, not concerns

Business case and Vision
document

Business goals and constraints
(including the scope of the
market to be addressed),
process goals and constraints,
organizational goals and
constraints

Preferred technology
platforms
Technology/product road
maps
Product family functional
and quality requirements
System/hardware architecture
Implementation constraints

Architecturally
significant
requirements
(ASR)

Architectural drivers are
the combination of
functional, quality attribute,
and business requirements
that ‘‘shape’’ the archi-
tecture or the particular
module under consideration.
To identify them, locate the
quality attribute scenarios
that reflect the highest priority
business goals relative to the
module and have the most
impact on the decomposition
of the module

Issue cards describe issues or
problems that arise from sets
of factors that, taken together,
pose significant architectural
challenges. These issues and
their influencing factors are
equivalent to the architecturally
significant requirements

ASR are identified out of
the requirements documents
(Vision, use case model,
supplementary specification),
and the risk list. Some of the
ASRs are expressed in the form
of scenarios (use case instances)
that are allocated as objectives
in the upcoming iteration;
this forms a requirements view (+1)

Those elements of the BAPO
context that are relevant for
the architectural fit and determine
the scope of the architecture.
Traditional types of requirements
are represented in the Customer
and Application views, which
can be influenced by the
architect in order to obtain
a better BAPO fit

A specific process is used to
identify ASR based on
stake-holder concerns, domain
and product family specific
checklists, and patterns for
analysis. ASR are partitioned
by segments of software
transformation cycle to
establish semi-separable
solution domains. ASR that
are in the same segment are
prioritized and analyzed for
potential conflicts

Candidate
architectural
solutions

A collection of views, patterns,
architectural tactics, and a
decomposition of modules.
Each module has a collection
of responsibilities, a set of use
cases, an interface, quality
attribute scenarios, and a
collection of constraints.
This aids the next iteration
of decomposition

Part of the four views
(conceptual, module,
execution, and code arch.
views). These represent
design decisions taken in
accordance with strategies
that solve one or more
issues. Issue Cards
capture the issues, their
influencing factors, and
solution strategies. Factors
are listed and characterized
in Factor Tables

Design decisions are incrementally
captured in four views (logical,
process, implementation,
deployment), supplemented
with a use-case view and with
complementary texts, and
plus an architectural prototype

Consistent and partially
complete CAFCR views
(Customer, Application,
Functional, Conceptual,
and Realization), filled
with various artifacts
(models, scenarios, interfaces, etc.)

A collection of patterns,
frameworks, and reference
architectures constitute the
source for alternative
decisions. An often used
practice is to analyze
alternatives along with any
proposed solutions

(continued on next page)

C
.

H
o

fm
eister

et
a

l.
/

T
h

e
J

o
u

rn
a

l
o

f
S

y
stem

s
a

n
d

S
o

ftw
a

re
8

0
(

2
0

0
7

)
1

0
6

–
1

2
6

117

Table 2 (continued)

Artifact ADD S4V RUP 4 + 1 BAPO/CAFCR ASC

Validated
architecture

Architecture describes a
system as containers for
functionality and
interactions among the
containers, typically
expressed in three views:
module decomposition,
concurrency, and deployment.
The architecture is validated
for satisfaction of
requirements/constraints
with respect to the decomposition

The description of the four
views, the Issue Cards,
and the Factor Tables
represent the validated
architecture

Baseline a complete,
executable architectural
prototype at the end of
the elaboration phase.
This prototype is
complete enough to be
tested, and to validate
that major architectural
objectives (functional and
non-functional, such as
performance) have been met,
and major technical risks
mitigated

Consistent and complete CAFCR
views. Consistency means that the
artifacts are mutually corresponding
and quality attribute analysis shows
no discrepancies (for example, all
quality requirements from the
Application view are satisfied by
the Conceptual and Realization
views). Completeness means that
artifacts have been elaborated in
sufficient detail to enable realization

Concepts, structure and
texture for each significant
segment of software
transformation cycle
(development/load/runtime)

Backlog Information to be processed in
subsequent steps including:
requirements to be analyzed,
decisions to be merged, patterns
to be instantiated, requirements
to be verified and refined

Supported in part by Issue
Cards, which help the
architect identify important
issues to address and drive
the bigger iterations through
the activities. Issue Cards
are intended to be permanent
artifacts. S4V also recommends
the capture of certain inputs
to the backlog: Issue Cards
can capture strategies (ideas)
that do not work

In larger projects, an Issue List
is maintained, which contains
elements of the backlog.
Architectural objectives are
allocated to upcoming iterations,
and captured in the form
of iteration objectives in
the iteration plan

Worry List contains: Artifacts to be
completed; Quality attributes to be
analyzed; Quality requirements to
be satisfied; BAPO analysis to be
done; BAPO issues to be improved

The initial backlog is a result
of the analysis. As the design
progresses ASR are
partitioned into solvable
problems and some are left
on the backlog to be
addressed later while some
are being addressed earlier.
Thus entries in the backlog
represent finer and finer
grained problems or issues

The order in which information
is processed will vary, for
example, the order of the
decomposition varies based
on business context, domain
knowledge, and technology
risk; the determination of drivers
is not always a top down process,
it might depend on a detailed
investigation to understand the
ramification of particular
requirements and constraints

Design knowledge comes from
the architect (or organizational
memory or community best practice)
and is recorded as an influencing
factor. A large amount of general
architectural knowledge is
documented in the Gaudı̀
website Muller (2005)

118
C

.
H

o
fm

eister
et

a
l.

/
T

h
e

J
o

u
rn

a
l

o
f

S
y

stem
s

a
n

d
S

o
ftw

a
re

8
0

(
2

0
0

7
)

1
0

6
–

1
2

6

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 119
each stage, depending on the desired quality attributes, a
suitable architectural pattern is selected and the system is
decomposed according to the pattern. ADD uses prioritiza-
tion of quality attributes when architectural patterns can-
not support all desired quality attributes at the same
time. The ATAM architecture evaluation method comple-
ments ADD design and analysis, and is used to analyze
how well design choices achieve the trade-off between all
desired quality attributes.

In S4V design decisions that affect quality requirements
might be reflected in multiple views. Both the conceptual
and the execution view may reflect some decisions that
affect dependability and performance. Each of the four
views has associated quality concerns that may or may
not be explicitly designated as quality attributes but are
important for most systems. Code architecture view is used
to minimize build time, facilitate product upgrades, etc.
Module view is used to achieve reuse, and execution archi-
tecture view serves to address performance, reliability and
other operational concerns. Global analysis is the process
in which non-functional requirements are analyzed and
strategies to address them are selected. S4V used categori-
zation and prioritization of requirements and applies this
to make sequence design process and to find proper
trade-off when conflicts arise.

In BAPO/CAFCR, quality aspects do not belong to a
particular view. Rather they form the cross-cutting con-
cerns that glue the views together and enable reasoning
across the views. Typically, a quality concern arises from
the Customer or Application View, where it becomes clear
that the system should fulfill a certain customer need or
support a particular usage. In the Functional View it is
formulated as a specific system quality requirement. The
Conceptual and Realization Views should then make sure
that this requirement is met, by a combination of applying
suitable mechanisms and using suitable technology. Espe-
cially for challenging quality concerns, this process may
require a significant number of iterations across the views.

ASC does not separate quality requirements from other
ASR. In fact ASC expects all quality requirements to be
defined by specific scenarios where the corresponding qual-
ity requirement plays an important role. This is quite sim-
ilar to the way functional requirements are defined. ASC
relies on segmentation of ASR to make sure that decisions
affecting a particular architectural structure can be ana-
lyzed independently with respect to the corresponding
quality ASR. Within the same segment ASR are prioritized
to resolve conflicts and to arrive at optimal trade off
choices. Specific choices in the design of each architectural
structure are guided by a domain specific collection of
architectural patterns which are known for specific quali-
ties. Texture design in ASC plays a very important role
in addressing a broad range of quality requirements that
are orthogonal to the main decomposition pattern of the
architectural structure. For example to address quality
requirements related to security, flow-control, overload
control, fault detection and handling all the components
in the system must observe consistent behavior. However
specifics of this behavior are not visible in the common
architectural views and may have no impact on the design
of architectural structures. Such design decisions are cap-
tured by ASC in texture design.

4.2.2. Common theme: multiple views

Table 3 summarizes the use of multiple views in the var-
ious methods. The primary motivation for multiple views is
separation of concerns: to group together closely related
concerns, and to have looser coupling between concerns
of different views.

Most of the views used in the methods can be catego-
rized as structural views, meaning they describe architec-
tural structure of the system. These are summarized in
the first nine rows of the table. The structural views both
guide the architectural synthesis activity and furnish the
main documentation of this activity.

S4V and RUP 4 + 1 prescribe specific views. Although
they use different names for the views, their views cover
similar structures for decomposition and dependencies,
instantiation and synchronization, resource usage and
organization of development artifacts. They differ in sup-
port for inheritance and dataflow.

The other methods are less prescriptive and instead indi-
cate categories or typical views. ADD produces the first
articulation of the architecture typically using module
decomposition and dependencies, concurrency and deploy-
ment. Other views can be added: their inclusion and the
amount of detail is driven by what is needed to satisfy
the architecturally significant requirements. The views for
the other two methods are tied to specific concerns. ASC
organizes views according to segments that are tied to the
software transformation cycle: design/development, build,
upgrade, start-up, operation. In BAPO/CAFCR, concerns
flow from the customer needs and wishes represented in the
commercial views within the context of the business, pro-
cess, and organization.

Two methods, RUP 4 + 1 and BAPO/CAFCR have one
or more additional views that do not describe architectural
structure but instead focus on goals or requirements of the
system, and these play a role mainly during the architec-
tural analysis activity. Note that ADD, S4V, and ASC also
analyze these concerns, but rather than using views they
rely on other methods within the software development
process to elicit this information. BAPO/CAFCR has the
broadest set of views, which are intended to be successive
models along a path from requirements to realization.

Finally, in addition to structural views, ASC has the
notion of ‘‘texture,’’ a replicated microstructure that
applies to most components and crosscuts the structural
views.

4.3. Variations

There are also important variations between the
methods:

Table 3
The use of multiple views

ADD S4V RUP4 + 1 BAPO/CAFCR ASC

Structural views The nature of the project
determines the views.
Typical views are module
decomposition, concurrency,
and deployment

Four views are used:
conceptual, module,
execution, and code
architecture views

Four views are used:
logical, process,
implementation,
and deployment views

Structural information is
mainly in the Conceptual
View. Its representation is
not fixed by the method,
but suggestions are provided

Each segment typically
calls for the use of one or
more structural views

Development time:
structure exhibited in
the source artifacts

Decomposition (e.g.,
of subsystems,
modules, classes)

Module decomposition Module Arch. View Logical View Conceptual View: System
decomposition and
component models

Functionality clusters, view
of the module structure

Dependencies (e.g.,
among modules,
interfaces, classes;
constrained by layers)

Often part of module
decomposition

Module Arch. View Logical View Conceptual View: System
decomposition and
component models

Functionality layers,
Portability layers,

Inheritance (e.g.,
of classes)

Could be covered by
an additional view

Not covered. (Modules
are not usually
individual classes.)

Logical View Conceptual View:
Information models

Could be covered by an
additional view

Runtime: structure
exhibited at runtime

Instantiation (e.g.,
components,
processes,
tasks, objects)

Could be covered by
an additional view

Conceptual Arch.
View Execution
Arch. View

Process View Conceptual View:
Collaborations

Views used in Operation
segment

Synchronization (e.g.,
control flow, threads
and their synchronization)

Concurrency ConceptualArch.
View Execution
Arch. View

Process View Conceptual View:
Collaborations

Views used in Operation
segment

Dataflow (e.g., how
data logically flows
through system)

Could be covered by
an additional view

Conceptual Arch. View Not covered Conceptual View:
Collaborations

Could be covered by an
additional view

Resource usage
(e.g., mapping to
processes, shared
libraries, or other
OS resources;
mapping to hardware)

Deployment Execution Arch. View Deployment View Conceptual View
and Realization View

Views used in Start-up
segment

Organization of and
relationships among
permanent and
temporary artifacts
(e.g., of source,
intermediate,
executable files)

Could be covered by
an additional view

Code Arch. View Implementation View Conceptual View:
Variation Models

Views used in Build
segment, and in
Delivery/installation/
upgrade segment

Non-structural views None: results of analysis
activity are not
captured in a view

None: results of
analysis activity
are not captured
in a view

The +1 (requirements)
view is used primarily
during analysis. It
focuses mainly on
functional requirements.
It crosscuts the four
structural views

The Customer and
Application Views describe
goals, and the Functional
View focuses on functional
requirements. These are used
primarily during analysis.
The Realization View
covers technology choices

None: results of analysis
activity are not captured
in a view

120
C

.
H

o
fm

eister
et

a
l.

/
T

h
e

J
o

u
rn

a
l

o
f

S
y

stem
s

a
n

d
S

o
ftw

a
re

8
0

(
2

0
0

7
)

1
0

6
–

1
2

6

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 121
• Intent – ADD was developed as a design approach
based on making a series of design decisions (aided by
the application of architectural tactics). Other view-
based approaches were initially centered on design arti-
facts, with their dependencies suggesting a sequencing of
activities. 4 + 1 embedded in RUP provides full process
support. BAPO/CAFCR has been especially developed
to support the development of product families.

• Emphasis – RUP puts a strong emphasis on incremen-
tally building an evolutionary prototype, forcing the
designers to a more experimental style of architectural
design. BAPO/CAFCR puts a strong emphasis on the
scoping of the architecture and once the scope of the
architecture using a BAPO analysis has been established,
the focus is on ensuring the consistency and the com-
pleteness of the CAFCR views. ADD puts its emphasis
on constructing the architecture by applying architec-
tural tactics (design options for the architect that are
influential in the control of a quality attribute response).

• Driving forces – ADD is quality attribute scenario
focused; experience suggests that a handful of these
shape the architecture and all other requirements are
then mapped to this structure. This fact is also recog-
nized in ASC, which ties architecture design to architec-
turally significant requirements. ASR are broader than
quality attributes and may include key functional
requirements. RUP is mostly driven by risk mitigation.

• Architectural Scope – ASC recognizes a hierarchy of
architectural scopes like product portfolio, product fam-
ily, a single product, and a product release. Each archi-
tecture design project uses the enclosing scope as the
context of the design.
Table 4
A grid to analyze a software architecture design method

Generic artifacts Artifacts in

Has the me

provision fo

following ar

How are th

and represe

Architectural analysis – Context
– Requirements, and
– Architecturally significant

requirements (ASR)

Architectural synthesis Candidate architectural solutions

– Architectural
design (e.g., views, perspectives)

– or Prototypes
– Rationale

Architectural evaluation – Quality attributes
– Architectural assessment

Overall process driver – Backlog

Other Other key a

of the meth

not matchin

generic one
• Process Scope – ADD provides a step for choosing the
architectural drivers but its scope is such that it depends
on more analysis types of activities from other methods,
such as global analysis from S4V. However, S4V does
not recommend or advocate specific evaluation tech-
niques. Thus ADD and S4V complement each other in
these respects.

5. A template for analyzing software architecture design

methods

One other outcome of this work is the proposal of a kind
of grid, or template, based on Fig. 10 and Tables 1 and 2,
to analyze other proposed software architecture design
methods, or even to drive the development of new architec-
ture design methods; see Table 4.

To illustrate the use of this grid, we have applied it to the
architectural method proposed by Garland and Anthony
(2002), which we will denote here as G&A; see Table 5.
Numbers in this table indicate page in the book. A more
complete table could also be created for this method, con-
taining the kind of detail given for the other methods in
Tables 1–3.

Using our grid to analyze this method, we can rapidly
identify the following points:

1. There is a strong focus on viewpoints and views, and the
description of these views using UML to document the
architecture; this occupies about half of the book.

2. Many of the activities and techniques are either sketchy
(chapter 11) or refer to other sources.
X Activities in X Techniques and tools in X

thod X

r the

tifacts?

ey named

nted?

Is the method X

providing activities to

produce these artifacts?

How are these activities

named and documented?

What specific tools and technique

is associated with the method X?

rtifacts

od X,

g the

s

Other key activities

of the method, not

fitting in the boxes above.

Table 5
Analysis of the Garland and Anthony (2002) method (G&A)

Generic artifacts Artifacts in G&A Activities in G&A Techniques and tools
in G&A

Architectural
analysis

– Context
– Requirements, and
– Architecturally significant

requirements (ASR)

– contextual and analysis
viewpoint (p. 13, 87–108)

– ??

– Analysis process,
similar to OOSE

OOSE Jacobson
et al. (1992)

Architectural
synthesis

Candidate architectural solutions

+ Architectural design
(e.g., views, perspectives)

+ Prototypes
+ Rationale

– Logical design viewpoints
(decomposes in component
viewpoint, logical data,
layered subsystem,. . .) (p. 87–174)

– Environment/physical viewpoint
(deployment, process,
physical data) (p.177–200)

– skeleton system (p. 205)
& prototyping (p. 206)

Small activities scattered

in the book,

to populate the views, but

not named explicitly.
– partitioning strategies

(208–213)
– changeability and

dependency management
(213–216)

– UML (p. 69–86)
– use of ADL (p. 208)
– pattern (p. 216–218)

Architectural
evaluation

– Quality attributes
– Architectural assessment

– ??
– ??

– Commonality and
variability analysis (p. 202)

– Architecture
evaluation (p. 208)

Overall process
driver

– Backlog – ?? – ??

122 C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126
3. Building a skeleton or architectural prototype is men-
tioned as a possibility.

4. There seems to be no concept of Architectural Signifi-
cant Requirements (except for a couple of mentions to
‘‘key requirements’’ and ‘‘key use cases’’ with no expla-
nation how they are identified).

5. There is no mention of design rationale (except for some
tracing between elements in views, and a mention of
requirements tracing p. 49).

6. Architecture evaluation is only mention briefly, and no
technique described, nor any artifact.

7. Beyond emphasizing iterative development in chapter 3,
there is no indication of any driver for architectural
activities.

8. There is very few explicit links to quality attributes.

Such an analysis would lead to the rapid identification of
element from other techniques that could come to comple-
ment some of its deficiencies. For example it would be nicely
complemented by the use of SEI’s techniques, such QAW
(Barbacci et al., 2003) or ATAM (Kazman et al., 1994;
Clements et al., 2002b) , or a better linkage to quality using
the ASC approach (see Section 2.5), or ADD (see Section 2.1).

Applying the grid to other methods is often impeded by
the lack of detailed material on the proposed methods,
associated maybe to their lack of maturity and/or limited
use in industry. For example, trying to apply our grid to
VTT’s QAD or QADA approach (Matinlassi et al.,
2002a,b), we found that views are well-articulated and jus-
tified, but there are very little description of the activities
that take place. Similarly for methods associated with
Model-Driven Architecture (Selic, 2004; Fowler, 2005),
which are not sufficiently mature and well-described to be
analyzed by our approach.

6. Related work

We have found four main approaches to comparing
design methods. Some researchers compare the methods
by comparing their results or artifacts. Others compare
the activities done when following the methods. Each of
these approaches breaks down further into comparisons
based on applying the methods to a particular example
application, or comparing the methods by classifying the
artifacts or activities.

The first group compares the artifacts for an example
application. Bahill et al. (1998) first provide a ‘‘bench-
mark’’ application to be used for comparing design meth-
ods. Then they provide a qualitative analysis of the
results of applying eleven design methods to the bench-
mark application. Sharble and Cohen (1993) use complex-
ity metrics to compare the class diagrams that result from
applying two different OO development methods on a
brewery application.

The next group also compares artifacts, but by classify-
ing them according to what they can model. Wieringa
(1998) does this for a number of structured and OO speci-
fication methods. Hong et al. (1993) do this as part of their
comparison of six OO analysis and design methods, so does
Fowler (1993).

The third kind of comparison examines the activities
undertaken when designing particular applications. Kim
and Lerch (1992) measure the cognitive activities of design-
ers when using an OO design method versus a functional

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 123
decomposition approach. Each participant in this study
designed two variants of a Towers of Hanoi application.

The approach we take in this paper falls into the fourth
category, characterizing and classifying activities then com-
paring them across methods. Song and Osterweil (1994) use
process modeling techniques to model the activities and, to
a lesser extent, the artifacts of the methodologies. Although
this approach is similar to ours, the approaches differ in the
development of the comparison model. They decompose
the activities of each methodology, then classify and com-
pare them. Thus the classification and comparison is begun
with the low-level elements. In contrast we create a general
model where only one level of decomposition is done,
resulting in the three activities of architectural analysis,
synthesis, and evaluation and the corresponding artifacts.
We then determine which elements of each methodology
map to these activities and artifacts, and compare to what
extent each methodology covers the various aspects of the
activities and artifacts.

Hong et al. (1993) also compare activities by first
characterizing and classifying them. They repeatedly
decompose the activities of each method, then create a
‘‘super-methodology’’ that is a union of all the finest gran-
ularity of the subactivities. Each method is compared to the
super-methodology. Fichman and Kemerer (1992) take a
similar approach, comparing methods using the eleven
analysis activities and ten design activities that are the sup-
erset of the activities supported by methods. Both of these
approaches decompose the activities to very specific tasks
that are tightly related to the artifacts produced by the
method (e.g., Identify classes, Identify inheritance relation-
ships). We did not want our general model to be restricted
by the kinds of artifacts our five methods produce (e.g.,
specific views used by the method), so we did not decom-
pose activities to the low level.

Dobrica and Niemelä (2002a,b) presented a survey and
comparison of software architecture analysis methods, such
as SAAM (Kazman et al., 1994) or ATAM (Kazman et al.,
1996), mostly focusing on how analysis attempted to satisfy
quality attributes. Their approach to comparing methods is
perhaps closest to ours. However, rather than comparing
architectural design methods, they are comparing methods
for software architecture evaluation. Thus the eight
methods have a much narrower scope, and in addition a
number of them are variants of each other. Like us they
compare activities and workflow at a fairly coarse granular-
ity, but they add a few other dimensions for comparison,
such as scope of method, stakeholders involved, etc.

In a more recent paper, Matinlassi (2004) extended the
approach to a comparison of software product-line design
methods, looking at five aspects: (1) context (goal, applica-
tion domain, etc.), (2) user (stakeholders), (3) contents
(method structure, artifacts, viewpoints, tool support,
etc.) and (4) validation (maturity).

Kruchten (2005) shows that if software engineers were
to use the term ‘‘design’’ analogously to the way other engi-
neers use it, design would include ‘‘some requirements
activities and all coding and testing activities.’’ In a similar
spirit, our use of the term ‘‘architecture design’’ encom-
passes analysis and evaluation activities. Architectural
synthesis, the activity that goes from the problem space
to the solution space is what others might equate with
the term ‘‘architecture design.’’ Fowler (1997) discusses
the importance of analysis, or understanding the problem,
in moving from the problem space to the solution space.
(Roshandel et al., 2004) reinforce our conviction that eval-
uation is an integral part of architecture design. They dem-
onstrate that the kinds of automated evaluation possible
depend on the architectural view described (where each
of the two views studied is represented in a different ADL).

Finally we note that our general model and the methods
it is derived from are for the architecture design of new sys-
tems, not for evolving or reconstructing the architecture of
existing systems. While parts of the model may be relevant
for architecture evolution, when comparing our model to
the Symphony architecture reconstruction process (van
Deursen et al., 2004) we see that the activities and artifacts
are not related at all. In both cases the activities can be
categorized into (1) understand the problem, (2) solve it,
and (3) evaluate the solution, but the same can be said of
nearly any problem-solving activity.

7. Future work

The future work we envision is centered on the three fun-
damental architecting activities: architectural analysis, archi-
tectural synthesis and architectural evaluation (see Fig. 10).
They are present in all the investigated methods. We foresee
ongoing harmonization and integration of the best concepts
from each of the investigated methods. This work can take
two routes. The first route is the most obvious one in the sense
that certain concepts in a particular method are replaced by a
better one from the other methods. The second route would
be along a kind of standardization effort in which the commu-
nity as a whole accepts a set of standard concepts, inspired by
or derived from the investigated methods.

In addition to the above described evolution along the
activity axes. We expect that the notion of backlog will
be elaborated further as a way to systematically relate the
various activities and to guarantee ‘‘architecting progress.’’
Yet another area of investigation would be the inclusion of
notions from the agile community in the backlog concept.

Next to these more generic evolution paths we foresee
that more domain specific variants of architecting methods
might arise. Further new development paradigms like
model-driven development (MDD) will have significant
influence. And future software architecting methods will
need to deal more explicitly with the system aspects.

8. Conclusion

In this paper we have analyzed a number of industrially
validated architectural design methods. Using a general
model for architectural design activity, we have identified

124 C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126
the common and variable ingredients of these methods.
Despite the different vocabulary used for the individual
methods they have a lot in common at the conceptual level.
The basic architecting activities, like architectural analysis,
architectural synthesis and architectural evaluation are pres-
ent in all of the investigated methods. The major variation
can be observed in the different details with respect to guid-
ance and process focus across the various methods. Here the
concept of backlog is crucial to relate the various activities.
For our general model many of the concepts we use are
already part of the IEEE 1471 (IEEE, 2000) vocabulary:
views, architectural concerns, context, stakeholders, etc.
Our more process-oriented model introduces the following
concepts: backlog, analysis, synthesis and evaluation.

An important part of our model is the inclusion of anal-
ysis and evaluation activities as part of architecture design.
While architecture evaluation has been the focus of much
prior work, the emphasis is typically on identifying candi-
date architectures or evaluating the completed architecture.
There has been far less work on incremental or ongoing
evaluation, and on architectural analysis. Our model
reveals these to be important research topics.

Our model also introduces the concept of a backlog as
the driving force behind the workflow. The backlog is a
much richer workflow concept than simply noting that iter-
ation is expected.

We offer a systematic grid or pattern for the further
analysis and comparison or other methods, as well as the
creation or synthesis of new software architecture design
methods (see Table 3). We hope that our increased under-
standing of the commonalities and differences of the vari-
ous approaches will contribute to future methods that
combine the strong points of the existing ones and provide
specific support for software architecture design in a large
variety of different contexts. As an example, two of the
authors looked at ways of combining ADD and RUP
4 + 1 by modeling ADD as a RUP activity, and found that
they complement each other well (Kazman et al., 2004).
ADD fills a need within the RUP: it provides a step-by-step
approach for defining a candidate architecture. The RUP
fills a need in the ADD by placing it in a lifecycle context;
the RUP provides guidance on how to proceed from the
candidate architecture to an executable architecture,
detailed design and implementation.
Acknowledgment

The Software Engineering Institute is a federally funded
research and development center sponsored by the US
Department of Defense.

References

America, P., Obbink, H., Rommes, E., 2003. Multi-view variation
modeling for scenario analysis. In: Proceedings of Fifth International
Workshop on Product Family Engineering (PFE-5), Siena, Italy.
Springer-Verlag, pp. 44–65.
Bachmann, F., Bass, L., Klein, M., 2002. Illuminating the Fundamental
Contributors to Software Architecture Quality (No. CMU/SEI-2002-
TR-025). Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

Bahill, A.T., Alford, M., Bharathan, K., Clymer, J.R., Dean, D.L., Duke,
J., Hill, G., LaBudde, E.V., Taipale, E.J., Wymore, A.W., 1998. The
design-methods comparison project. IEEE Transactions on Systems,
Man and Cybernetics, Part C 28 (1), 80–103.

Barbacci, M.R., Ellison, R., Lattanze, A.J., Stafford, J.A., Weinstock,
C.B., Wood, W.G., 2003. Quality Attribute Workshops (QAW), third
ed. (CMU/SEI-2003-TR-016). Software Engineering Institute, Carne-
gie Mellon University, Pittsburgh, PA.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in
Practice, second ed. Addison-Wesley, Reading, MA.

Bosch, J., 2000. Design and Use of Software Architecture: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, Boston.

Clements, P., Northrop, L., 2002. Software Product Lines: Practice and
Patterns. Addison-Wesley, Boston.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Nord, R., Stafford, J., 2002a. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, Boston.

Clements, P., Kazman, R., Klein, M., 2002b. Evaluating Software
Architecture. Addison-Wesley, Boston.

Dikel, D.M., Kane, D., Wilson, J.R., 2001. Software Architecture:
Organizational Principles and Patterns. Prentice-Hall, Upper Saddle
River, NJ.

Dobrica, L., Niemelä, E., 2002a. Software architecture quality analysis
methods. In: Proceedings of Software Reuse: Methods, Techniques,
and Tools: 7th International Conference (ICSR-7), Austin, TX, USA.
Springer-Verlag, pp. 337–338.

Dobrica, L., Niemelä, E., 2002b. A survey on software architecture
analysis methods. IEEE Transactions on Software Engineering 28 (7),
638–653.

Fichman, R.G., Kemerer, C.F., 1992. Object-oriented and conventional
analysis and design methodologies. IEEE Computer 25 (10), 22–39.

Fowler, M., 1993. A comparison of object-oriented analysis and design
methods. In: Proceedings of 11th international conference on Tech-
nology of Object-Oriented Languages and Systems, Santa Barbara,
California, United States. Prentice-Hall, Inc., p. 527.

Fowler, M., 1997. Analysis Patterns: Reusable Object Models. Addison-
Wesley, Boston.

Fowler, M., 2005. Language Workbenches and Model Driven Architec-
ture. Available from <http://www.martinfowler.com/articles/mdaLan-
guageWorkbench.html> (Retrieved 1.5.2006).

Garland, J., Anthony, R., 2002. Large-Scale Software Architecture: A
Practical Guide using UML. John Wiley & Sons, Inc., New York.

Gero, J.S., 1990. Design prototypes: a knowledge representation scheme
for design. AI Magazine 11 (4), 26–36.

Gero, J.S., Kannengiesser, U., 2004. The situated function–behaviour–
structure framework. Design Studies 25 (4), 373–391.

Gomaa, H., 2000. Designing Concurrent, Distributed and Real-time
Applications with UML. Addison-Wesley, Boston.

Hofmeister, C., Nord, R., Soni, D., 1999. Applied Software Architecture.
Addison-Wesley, Boston.

Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., America,
P., 2005a. Generalizing a model of software architecture design from
five industrial approaches. In: Proceedings of 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA 5), Pittsburgh, PA.
IEEE Computer Society, pp. 77–86.

Hofmeister, C., Nord, R., Soni, D., 2005b. Global analysis: moving from
software requirements specification to structural views of the software
architecture. IEE Proceedings Software 152 (4), 187–197.

Hong, S., van den Goor, G., Brinkkemper, S., 1993. A formal approach to
the comparison of object-oriented analysis and design methodologies.
In: Proceedings of 26th Hawaii International Conference on System
Sciences, Wailea, HI, USA, pp. iv 689–698.

IEEE, 2000. IEEE std 1471:2000–Recommended Practice for Architectural
Description of Software Intensive Systems. IEEE, Los Alamitos, CA.

http://www.martinfowler.com/articles/mdaLanguageWorkbench.html
http://www.martinfowler.com/articles/mdaLanguageWorkbench.html

C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126 125
Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G., 1992. Object-
Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, Reading, MA.

Kazman, R., Bass, L., Webb, M., Abowd, G., 1994. SAAM: a method for
analyzing the properties of software architectures. In: Proceedings of
16th International Conference on Software Engineering (ICSE-16),
Sorrento, Italy. IEEE Computer Society Press, pp. 81–90.

Kazman, R., Abowd, G., Bass, L., Clements, P., 1996. Scenario-based
analysis of software architecture. IEEE Software 13 (6), 47–55.

Kazman, R., Kruchten, P., Nord, R., Tomayko, J., 2004. Integrating
Software Architecture-Centric Methods into the Rational Unified
Process (No. CMU/SEI-2004-TR-011). Software Engineering Insti-
tute, Pittsburgh, PA.

Kim, J., Lerch, F.J., 1992. Towards a model of cognitive process in logical
design: comparing object-oriented and traditional functional decom-
position software methodologies. In: Proceedings of SIGCHI Confer-
ence on Human Factors in Computing Systems, Monterey, California,
United States. ACM Press, pp. 489–498.

Kruchten, P., 1995. The 4 + 1 View Model of Architecture. IEEE
Software 12 (6), 45–50.

Kruchten, P., 2003. The Rational Unified Process: An Introduction, third
ed. Addison-Wesley, Boston.

Kruchten, P., 2005. Casting software design in the function–behavior–
structure (FBS) framework. IEEE Software 22 (2), 52–58.

Matinlassi, M., 2004. Comparison of software product line architecture
design methods: COPA, FAST, FORM, KobrA and QADA. In:
Proceedings of 29th International Conference on Software Engineering
(ICSE 2004), Edinburgh, Scotland. IEEE, pp. 127–136.

Matinlassi, M., Niemela, E., 2002b. Quality-driven architecture design
method. In: Proceedings of 15th International Conference of Software
& Systems Engineering and their Applications (ICSSEA 2002), Paris,
France, Conservatoire National des Arts et Métiers, vol. 3, session 11.

Matinlassi, M., Niemelä, E., Dobrica, L., 2002a. Quality-driven architec-
ture design and quality analysis method (Report VTT256), VTT
Technical Research Centre of Finland, Espoo, Finland, 128p.

Muller, G., 2005. The Gaudi Project Website. Available from: <http://
www.gaudisite.nl/>.

Nord, R., Tomayko, J., Wojcik, R., 2004. Integrating Software-Architec-
ture-Centric Methods into eXtreme Programming (XP) (CMU/SEI-
2004-TN-036). Software Engineering Institute, Pittsburgh, PA.

Obbink, H., Müller, J.K., America, P., van Ommering, R., Muller, G., van
der Sterren, W., Wijnstra, J.G., 2000. COPA: a component-oriented
platform architecting method for families of software-intensive elec-
tronic products (Tutorial). In: Proceedings of SPLC1, the First
Software Product Line Conference, Denver, Colorado.

Obbink, H., Kruchten, P., Kozaczynski, W., Hilliard, R., Ran, A.,
Postema, H., Lutz, D., Kazman, R., Tracz, W., Kahane, E., 2002.
Report on Software Architecture Review and Assessment (SARA),
Version 1.0. Available from: <http://philippe.kruchten.com/architec-
ture/SARAv1.pdf>.

Ran, A., 2000. ARES Conceptual Framework for Software Architecture.
In: Jazayeri, M., Ran, A., van der Linden, F. (Eds.), Software
Architecture for Product Families Principles and Practice. Addison-
Wesley, Boston, pp. 1–29.

Roshandel, R., Schmerl, B., Medvidovic, N., Garlan, D., Zhang, D., 2004.
Understanding Tradeoffs among Different Architectural Modeling
Approaches. In: Proceedings of 4th Working IEEE/IFIP Conference
on Software Architecture (WICSA-04), Oslo, Norway, pp. 47–56.

Rozanski, N., Woods, E., 2005. Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-
Wesley, Boston.

Schwaber, K., Beedle, M., 2002. Agile Software Development with
SCRUM. Prentice-Hall, Upper Saddle River, NJ.

Selic, B., 2004. The pragmatics of model-driven development. IEEE
Software 20 (5), 19–25.

Sharble, R.C., Cohen, S.S., 1993. The object-oriented brewery: a
comparison of two object-oriented development methods. ACM
SIGSOFT Software Engineering Notes 18 (2), 60–73.
Song, X., Osterweil, L.J., 1994. Experience with an approach to
comparing software design methodologies. IEEE Transactions on
Software Engineering 20 (5), 364–384.

Soni, D., Nord, R., Hofmeister, C., 1995. Software architecture in
industrial applications. In: Proceedings of 17th International Confer-
ence on Software Engineering (ICSE-17). ACM Press, pp. 196–207.

van der Linden, F., Bosch, J., Kamsteries, E., Känsälä, K., Obbink, H.,
2004. Software product family evaluation. In: Proceedings of Software
Product Lines, Third International Conference, SPLC 2004, Boston,
MA. Springer-Verlag, pp. 110–129.

van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.,
2004. Symphony: view-driven software architecture reconstruction. In:
Proceedings of 4th Working IEEE/IFIP Conference on Software
Architecture (WICSA-04), Oslo, Norway. IEEE, pp. 122–134.

Wieringa, R., 1998. A survey of structured and object-oriented software
specification methods and techniques. ACM Computing Surveys 30
(4), 459–527.

Christine Hofmeister is an assistant professor in Computer Science &
Engineering at Lehigh University, in Bethlehem, PA. Her current research
areas are software architecture and component-based systems. She
received her A.B in Mathematics from Bryn Mawr College, M.S. in
Computer Science from Lehigh University, and Doctorate from the
University of Maryland, with a dissertation on dynamic reconfiguration of
distributed systems. Prior to joining Lehigh’s faculty in 2000, she spent a
number of years at Siemens Corporate Research in Princeton, NJ. While
at Siemens, she coauthored the book Applied Software Architecture with
Robert Nord. crh@eecs.lehigh.edu

Philippe Kruchten is a professor of software engineering at the University
of British Columbia, in Vancouver, Canada. His current interests are
software process modeling and software architecture, and the impact of
culture on global engineering projects. Prior to UBC, he spent 16 years at
Rational Software (now IBM), where he was associated as a consultant
with several large-scale defense and aerospace projects around the world,
and where he developed the Rational Unified Process�, a software engi-
neering process. He also spent 8 years at Alcatel in France, developing
telephone switches. He has a mechanical engineering diploma and a
doctorate degree in information systems from French institutions. He is
the author of three books about RUP. pbk@ece.ubc.ca

Robert L. Nord is a senior member of the technical staff in the Product
Line Systems Program at the Software Engineering Institute (SEI) where
he works to develop and communicate effective methods and practices
for software architecture. Prior to joining the SEI, Dr. Nord was a
member of the software architecture program at Siemens, where he
balanced research in software architecture with work in designing and
evaluating large-scale systems. He earned a Ph.D. in Computer Science
from Carnegie Mellon University. He is co-author of Applied Software

Architecture and Documenting Software Architectures: Views and Beyond.
rn@sei.cmu.edu

Henk Obbink is a principal scientist at Philips Research Laboratories in
Eindhoven. He heads the architecture research team for software-intensive
healthcare systems. His research interests have included computer systems,
communication systems, defense systems, and consumer products. He
received his doctorate in chemistry and physics from the University in
Utrecht. He is a member of the IFIP Working Group 2.10 on Software
Architecture and the steering committees of the Working IEEE/IFIP
Conference on Software Architecture and the Software Product Line
Conference. He was recently one of the guest editors of the March/April
IEEE special Issue on the Past, Present and Future of Software Archi-
tectures. henk.obbink@philips.com

Alexander Ran is a Research Fellow at Nokia Research Center (NRC), in
Cambridge, MA, USA. He is currently a Principal Investigator in

http://www.gaudisite.nl/
http://www.gaudisite.nl/
http://philippe.kruchten.com/architecture/SARAv1.pdf
http://philippe.kruchten.com/architecture/SARAv1.pdf

126 C. Hofmeister et al. / The Journal of Systems and Software 80 (2007) 106–126
collaboration between Nokia and Massachusetts Institute of Technology
focusing on architectures for task-oriented user interfaces. Prior to
that he lead a research group working on software architecture analy-
sis for improving performance characteristics of mobile phones,
conducted software architecture reviews, contributed to establishing
software architecture processes, and served as a consultant for software
architecture groups of several Nokia business units. alexander.ran@
nokia.com
Pierre America received a Master’s degree from the University of Utrecht in
1982 and a Ph.D. from the Free University of Amsterdam in 1989. Since he
joined Philips Research in 1982, he has been working in different areas of
computer science, ranging from formal aspects of parallel object-oriented
programming to music processing. During the last few years he has been
working on software and system architecting approaches for product
families. He has been applying and validating these approaches in close
cooperation with Philips Medical Systems. pierre.america@ philips.com

	A general model of software architecture design derived from five industrial approaches
	Introduction
	Five industrial software architecture design methods
	Attribute-Driven Design
	Siemens rsquo 4 views
	RUP rsquo s 4+1 Views
	Business architecture process and organization
	Architectural separation of concerns

	A general model for software architecture design
	Architectural design activities and artifacts
	Workflow and the concept of backlog

	Method comparison using the general model
	Side-by-side comparison
	Commonalities
	Common theme: dealing with quality requirements
	Common theme: multiple views

	Variations

	A template for analyzing software architecture design methods
	Related work
	Future work
	Conclusion
	Acknowledgment
	References

