
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Implementing
Architectures

Software Architecture
Lecture 15

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

2

Software Architecture: Foundations, Theory, and Practice	

The Mapping Problem

  Implementation is the one phase of software engineering that is not
optional

  Architecture-based development provides a unique twist on the
classic problem
  It becomes, in large measure, a mapping activity

  Maintaining mapping means ensuring that our architectural intent is
reflected in our constructed systems

3

Design
Decisions

Implementation
Artifacts

Software Architecture: Foundations, Theory, and Practice	

Common Element Mapping

  Components and Connectors
  Partitions of application computation and

communication functionality
  Modules, packages, libraries, classes, explicit

components/connectors in middleware
  Interfaces

  Programming-language level interfaces (e.g., APIs/
function or method signatures) are common

  State machines or protocols are harder to map

4

Software Architecture: Foundations, Theory, and Practice	

Common Element Mapping
(cont’d)

  Configurations
  Interconnections, references, or dependencies

between functional partitions
  May be implicit in the implementation
  May be externally specified through a MIL and

enabled through middleware
  May involve use of reflection

  Design rationale
  Often does not appear directly in implementation
  Retained in comments and other documentation

5

Software Architecture: Foundations, Theory, and Practice	

Common Element Mapping
(cont’d)
  Dynamic Properties (e.g., behavior):

  Usually translate to algorithms of some sort
  Mapping strategy depends on how the behaviors are specified

and what translations are available
  Some behavioral specifications are more useful for generating

analyses or testing plans
  Non-Functional Properties

  Extremely difficult to do since non-functional properties are
abstract and implementations are concrete

  Achieved through a combination of human-centric strategies like
inspections, reviews, focus groups, user studies, beta testing,
and so on

6

Software Architecture: Foundations, Theory, and Practice	

One-Way vs. Round Trip Mapping
  Architectures inevitably change after implementation begins

  For maintenance purposes
  Because of time pressures
  Because of new information

  Implementations can be a source of new information
  We learn more about the feasibility of our designs when we

implement
  We also learn how to optimize them

7

Design
Decisions

Implementation
Artifacts

Software Architecture: Foundations, Theory, and Practice	

One-Way vs. Round Trip Mapping
(cont’d)
  Keeping the two in sync is a difficult technical and

managerial problem
  Places where strong mappings are not present are

often the first to diverge
  One-way mappings are easier

  Must be able to understand impact on implementation
for an architectural design decision or change

  Two way mappings require more insight
  Must understand how a change in the implementation

impacts architecture-level design decisions

8

Software Architecture: Foundations, Theory, and Practice	

One-Way vs. Round Trip Mapping
(cont’d)
  One strategy: limit changes

  If all system changes must be done to the architecture first, only
one-way mappings are needed

  Works very well if many generative technologies in use
  Often hard to control in practice; introduces process delays and

limits implementer freedom
  Alternative: allow changes in either architecture or implementation

  Requires round-trip mappings and maintenance strategies
  Can be assisted (to a point) with automated tools

9

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

10

Software Architecture: Foundations, Theory, and Practice	

Architecture Implementation
Frameworks

  Ideal approach: develop architecture based on a known
style, select technologies that provide implementation
support for each architectural element

11

Design
Decisions

Database

Software
Library

OO Class

Software Architecture: Foundations, Theory, and Practice	

Architecture Implementation
Frameworks

  This is rarely easy or trivial
  Few programming languages have explicit support for

architecture-level constructs
  Support infrastructure (libraries, operating systems,

etc.) also has its own sets of concepts, metaphors,
and rules

  To mitigate these mismatches, we leverage an
architecture implementation framework

12

Software Architecture: Foundations, Theory, and Practice	

Architecture Implementation
Frameworks

  Definition: An architecture implementation framework
is a piece of software that acts as a bridge between a
particular architectural style and a set of implementation
technologies. It provides key elements of the
architectural style in code, in a way that assists
developers in implementing systems that conform to the
prescriptions and constraints of the style.

13

F
r
a
m
e
w
o
r
k

Software Architecture: Foundations, Theory, and Practice	

Canonical Example

  The standard I/O (‘stdio’) framework in UNIX and other
operating systems
  Perhaps the most prevalent framework in use today
  Style supported: pipe-and-filter
  Implementation technologies supported: concurrent

process-oriented operating system, (generally) non-
concurrent language like C

14

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; ｩ 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice	

More on Frameworks

  Frameworks are meant to assist developers in following a style
  But generally do not constrain developers from violating a style

if they really want to
  Developing applications in a target style does not require a

framework
  But if you follow good software engineering practices, you’ll

probably end up developing one anyway
  Frameworks are generally considered as underlying infrastructure or

substrates from an architectural perspective
  You won’t usually see the framework show up in an architectural

model, e.g., as a component

15

Software Architecture: Foundations, Theory, and Practice	

Same Style, Different Frameworks

  For a given style, there is no one perfect architecture
framework
  Different target implementation technologies induce

different frameworks
 stdio vs. iostream vs. java.io

  Even in the same (style/target technology) groupings,
different frameworks exist due to different qualitative
properties of frameworks
  java.io vs. java.nio
  Various C2-style frameworks in Java

16

Software Architecture: Foundations, Theory, and Practice	

Evaluating Frameworks

  Can draw out some of the qualitative properties just
mentioned

  Platform support
  Target language, operating system, other

technologies
  Fidelity

  How much style-specific support is provided by the
framework?
 Many frameworks are more general than one

target style or focus on a subset of the style rules
  How much enforcement is provided?

17

Software Architecture: Foundations, Theory, and Practice	

Evaluating Frameworks (cont’d)

  Matching Assumptions
  Styles impose constraints on the target architecture/application
  Frameworks can induce constraints as well

  E.g., startup order, communication patterns …
  To what extent does the framework make too many (or too few)

assumptions?
  Efficiency

  Frameworks pervade target applications and can potentially get
involved in any interaction

  To what extent does the framework limit its slowdown and
provide help to improve efficiency if possible (consider buffering
in stdio)?

18

Software Architecture: Foundations, Theory, and Practice	

Evaluating Frameworks (cont’d)

  Other quality considerations
  Nearly every other software quality can affect

framework evaluation and selection
 Size
 Cost
 Ease of use
 Reliability
 Robustness
 Availability of source code
 Portability
 Long-term maintainability and support

19

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

20

Software Architecture: Foundations, Theory, and Practice	

Recall Pipe-and-Filter

  Components (‘filters’) organized linearly,
communicate through character-stream ‘pipes,’ which
are the connectors

  Filters may run concurrently on partial data
  In general, all input comes in through the left and all

output exits from the right

21

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice	

Framework #1: stdio

  Standard I/O framework used in C programming language
  Each process is a filter

  Reads input from standard input (aka ‘stdin’)
  Writes output to standard output (aka ‘stdout’)

  Also a third, unbuffered output stream called standard error
(‘stderr’) not considered here

  Low and high level operations
  getchar(…), putchar(…) move one character at a time
  printf(…) and scanf(…) move and format entire strings

  Different implementations may vary in details (buffering
strategy, etc.)

22

Software Architecture: Foundations, Theory, and Practice	

Evaluating stdio
  Platform support

  Available with most, if
not all, implementations
of C programming
language

  Operates somewhat
differently on OSes with
no concurrency (e.g.,
MS-DOS)

  Fidelity

  Good support for
developing P&F
applications, but no
restriction that apps have
to use this style

  Matching assumptions

  Filters are processes and
pipes are implicit. In-
process P&F applications
might require
modifications

  Efficiency

  Whether filters make
maximal use of
concurrency is partially
up to filter
implementations and
partially up to the OS

23

Software Architecture: Foundations, Theory, and Practice	

Framework #2: java.io

  Standard I/O framework used in Java language
  Object-oriented
  Can be used for in-process or inter-process P&F

applications
  All stream classes derive from InputStream or

OutputStream
  Distinguished objects (System.in and System.out) for

writing to process’ standard streams
  Additional capabilities (formatting, buffering) provided

by creating composite streams (e.g., a Formatting-
Buffered-InputStream)

24

Software Architecture: Foundations, Theory, and Practice	

Evaluating java.io

  Platform support
  Available with all Java

implementations on many
platforms

  Platform-specific
differences abstracted
away

  Fidelity
  Good support for

developing P&F
applications, but no
restriction that apps have
to use this style

  Matching assumptions
  Easy to construct intra-

and inter-process P&F
applications

  Concurrency can be an
issue; many calls are
blocking

  Efficiency
  Users have fine-grained

control over, e.g.,
buffering

  Very high efficiency
mechanisms (memory
mapped I/O, channels)
not available (but are in
java.nio)

25

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

26

Software Architecture: Foundations, Theory, and Practice	

Middleware and Component
Models
  This may all sound similar to various kinds of

middleware/component frameworks
  CORBA, COM/DCOM, JavaBeans, .NET, Java Message

Service (JMS), etc.
  They are closely related

  Both provide developers with services not available in
the underlying OS/language

  CORBA provides well-defined interfaces, portability,
remote procedure call…

  JavaBeans provides a standardized packaging
framework (the bean) with new kinds of introspection
and binding 27

Software Architecture: Foundations, Theory, and Practice	

Middleware and Component
Models (cont’d)
  Indeed, architecture implementation frameworks are

forms of middleware
  There’s a subtle difference in how they emerge and

develop
  Middleware generally evolves based on a set of

services that the developers want to have available
 E.g., CORBA: Support for language heterogeneity,

network transparency, portability
  Frameworks generally evolve based on a particular

architectural style that developers want to use
  Why is this important?

28

Software Architecture: Foundations, Theory, and Practice	

Middleware and Component
Models (cont’d)
  By focusing on services, middleware developers often make other

decisions that substantially impact architecture
  E.g., in supporting network transparency and language

heterogeneity, CORBA uses RPC
  But is RPC necessary for these services or is it just an enabling

technique?
  In a very real way, middleware induces an architectural style

  CORBA induces the ‘distributed objects’ style
  JMS induces a distributed implicit invocation style

  Understanding these implications is essential for not having major
problems when the tail wags the dog!

29

Software Architecture: Foundations, Theory, and Practice	

Resolving Mismatches

  A style is chosen first, but the middleware selected for
implementation does not support (or contradicts) that style

  A middleware is chosen first (or independently) and has undue
influence on the architectural style used

  Strategies
  Change or adapt the style
  Change the middleware selected
  Develop glue code
  Leverage parts of the middleware

and ignore others
  Hide the middleware in components/connectors

30

Use the middleware
as the basis for

a framework

Software Architecture: Foundations, Theory, and Practice	

Hiding Middleware in Connectors

31

Comp 1

Comp 2

Async Event

Comp 1

Comp 2

RPC

(thread)

(thread)

Architecture

Implementation

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

32

Software Architecture: Foundations, Theory, and Practice	

Building a New Framework

  Occasionally, you need a new framework
  The architectural style in use is novel
  The architectural style is not novel but it is being

implemented on a platform for which no framework exists
  The architectural style is not novel and frameworks exist for

the target platform, but the existing frameworks are
inadequate

  Good framework development is extremely difficult
  Frameworks pervade nearly every aspect of your system
  Making changes to frameworks often means changing the

entire system
  A task for experienced developers/architects

33

Software Architecture: Foundations, Theory, and Practice	

New Framework Guidelines

  Understand the target style first
  Enumerate all the rules and constraints in concrete

terms
  Provide example design patterns and corner cases

  Limit the framework to the rules and constraints of the
style
  Do not let a particular target application’s needs creep

into the framework
  “Rule of three” for applications

34

Software Architecture: Foundations, Theory, and Practice	

New Framework Guidelines
(cont’d)

  Choose the framework scope
  A framework does not necessarily have to implement

all possible stylistic advantages (e.g., dynamism or
distribution)

  Avoid over-engineering
  Don’t add capabilities simply because they are clever

or “cool”, especially if known target applications won’t
use them

  These often add complexity and reduce performance

35

Software Architecture: Foundations, Theory, and Practice	

New Framework Guidelines
(cont’d)
  Limit overhead for application developers

  Every framework induces some overhead (classes must
inherit from framework base classes, communication
mechanisms limited)

  Try to put as little overhead as possible on framework
users

  Develop strategies and patterns for legacy systems and
components
  Almost every large application will need to include

elements that were not built to work with a target
framework

  Develop strategies for incorporating and wrapping these

36

Software Architecture: Foundations, Theory, and Practice	

Concurrency

  Concurrency is one of the most difficult concerns to address in
implementation
  Introduction of subtle bugs: deadlock, race conditions…
  Another topic on which there are entire books written

  Concurrency is often an architecture-level concern
  Decisions can be made at the architectural level
  Done carefully, much concurrency management can be

embedded into the architecture framework
  Consider our earlier example, or how pipe-and-filter architectures

are made concurrent without direct user involvement

37

Software Architecture: Foundations, Theory, and Practice	

Generative Technologies

  With a sufficiently detailed architectural model, various
implementation artifacts can be generated
  Entire system implementations

 Requires extremely detailed models including
behavioral specifications

 More feasible in domain-specific contexts
  Skeletons or interfaces

 With detailed structure and interface specifications
  Compositions (e.g., glue code)

 With sufficient data about bindings between two
elements

38

Software Architecture: Foundations, Theory, and Practice	

Maintaining Consistency

  Strategies for maintaining one-way or round-trip mappings
  Create and maintain traceability links from architectural

implementation elements
 Explicit links in a database, in architectural models, in

code comments can all help with consistency checking
  Make the architectural model part of the implementation

 When the model changes, the implementation adapts
automatically

 May involve “internal generation”
  Generate some or all of the implementation from the

architecture

39

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

40

