
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Implementing
Architectures

Software Architecture
Lecture 15

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

2

Software Architecture: Foundations, Theory, and Practice	

The Mapping Problem

  Implementation is the one phase of software engineering that is not
optional

  Architecture-based development provides a unique twist on the
classic problem
  It becomes, in large measure, a mapping activity

  Maintaining mapping means ensuring that our architectural intent is
reflected in our constructed systems

3

Design
Decisions

Implementation
Artifacts

Software Architecture: Foundations, Theory, and Practice	

Common Element Mapping

  Components and Connectors
  Partitions of application computation and

communication functionality
  Modules, packages, libraries, classes, explicit

components/connectors in middleware
  Interfaces

  Programming-language level interfaces (e.g., APIs/
function or method signatures) are common

  State machines or protocols are harder to map

4

Software Architecture: Foundations, Theory, and Practice	

Common Element Mapping
(cont’d)

  Configurations
  Interconnections, references, or dependencies

between functional partitions
  May be implicit in the implementation
  May be externally specified through a MIL and

enabled through middleware
  May involve use of reflection

  Design rationale
  Often does not appear directly in implementation
  Retained in comments and other documentation

5

Software Architecture: Foundations, Theory, and Practice	

Common Element Mapping
(cont’d)
  Dynamic Properties (e.g., behavior):

  Usually translate to algorithms of some sort
  Mapping strategy depends on how the behaviors are specified

and what translations are available
  Some behavioral specifications are more useful for generating

analyses or testing plans
  Non-Functional Properties

  Extremely difficult to do since non-functional properties are
abstract and implementations are concrete

  Achieved through a combination of human-centric strategies like
inspections, reviews, focus groups, user studies, beta testing,
and so on

6

Software Architecture: Foundations, Theory, and Practice	

One-Way vs. Round Trip Mapping
  Architectures inevitably change after implementation begins

  For maintenance purposes
  Because of time pressures
  Because of new information

  Implementations can be a source of new information
  We learn more about the feasibility of our designs when we

implement
  We also learn how to optimize them

7

Design
Decisions

Implementation
Artifacts

Software Architecture: Foundations, Theory, and Practice	

One-Way vs. Round Trip Mapping
(cont’d)
  Keeping the two in sync is a difficult technical and

managerial problem
  Places where strong mappings are not present are

often the first to diverge
  One-way mappings are easier

  Must be able to understand impact on implementation
for an architectural design decision or change

  Two way mappings require more insight
  Must understand how a change in the implementation

impacts architecture-level design decisions

8

Software Architecture: Foundations, Theory, and Practice	

One-Way vs. Round Trip Mapping
(cont’d)
  One strategy: limit changes

  If all system changes must be done to the architecture first, only
one-way mappings are needed

  Works very well if many generative technologies in use
  Often hard to control in practice; introduces process delays and

limits implementer freedom
  Alternative: allow changes in either architecture or implementation

  Requires round-trip mappings and maintenance strategies
  Can be assisted (to a point) with automated tools

9

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

10

Software Architecture: Foundations, Theory, and Practice	

Architecture Implementation
Frameworks

  Ideal approach: develop architecture based on a known
style, select technologies that provide implementation
support for each architectural element

11

Design
Decisions

Database

Software
Library

OO Class

Software Architecture: Foundations, Theory, and Practice	

Architecture Implementation
Frameworks

  This is rarely easy or trivial
  Few programming languages have explicit support for

architecture-level constructs
  Support infrastructure (libraries, operating systems,

etc.) also has its own sets of concepts, metaphors,
and rules

  To mitigate these mismatches, we leverage an
architecture implementation framework

12

Software Architecture: Foundations, Theory, and Practice	

Architecture Implementation
Frameworks

  Definition: An architecture implementation framework
is a piece of software that acts as a bridge between a
particular architectural style and a set of implementation
technologies. It provides key elements of the
architectural style in code, in a way that assists
developers in implementing systems that conform to the
prescriptions and constraints of the style.

13

F
r
a
m
e
w
o
r
k

Software Architecture: Foundations, Theory, and Practice	

Canonical Example

  The standard I/O (‘stdio’) framework in UNIX and other
operating systems
  Perhaps the most prevalent framework in use today
  Style supported: pipe-and-filter
  Implementation technologies supported: concurrent

process-oriented operating system, (generally) non-
concurrent language like C

14

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; ｩ 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice	

More on Frameworks

  Frameworks are meant to assist developers in following a style
  But generally do not constrain developers from violating a style

if they really want to
  Developing applications in a target style does not require a

framework
  But if you follow good software engineering practices, you’ll

probably end up developing one anyway
  Frameworks are generally considered as underlying infrastructure or

substrates from an architectural perspective
  You won’t usually see the framework show up in an architectural

model, e.g., as a component

15

Software Architecture: Foundations, Theory, and Practice	

Same Style, Different Frameworks

  For a given style, there is no one perfect architecture
framework
  Different target implementation technologies induce

different frameworks
 stdio vs. iostream vs. java.io

  Even in the same (style/target technology) groupings,
different frameworks exist due to different qualitative
properties of frameworks
  java.io vs. java.nio
  Various C2-style frameworks in Java

16

Software Architecture: Foundations, Theory, and Practice	

Evaluating Frameworks

  Can draw out some of the qualitative properties just
mentioned

  Platform support
  Target language, operating system, other

technologies
  Fidelity

  How much style-specific support is provided by the
framework?
 Many frameworks are more general than one

target style or focus on a subset of the style rules
  How much enforcement is provided?

17

Software Architecture: Foundations, Theory, and Practice	

Evaluating Frameworks (cont’d)

  Matching Assumptions
  Styles impose constraints on the target architecture/application
  Frameworks can induce constraints as well

  E.g., startup order, communication patterns …
  To what extent does the framework make too many (or too few)

assumptions?
  Efficiency

  Frameworks pervade target applications and can potentially get
involved in any interaction

  To what extent does the framework limit its slowdown and
provide help to improve efficiency if possible (consider buffering
in stdio)?

18

Software Architecture: Foundations, Theory, and Practice	

Evaluating Frameworks (cont’d)

  Other quality considerations
  Nearly every other software quality can affect

framework evaluation and selection
 Size
 Cost
 Ease of use
 Reliability
 Robustness
 Availability of source code
 Portability
 Long-term maintainability and support

19

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

20

Software Architecture: Foundations, Theory, and Practice	

Recall Pipe-and-Filter

  Components (‘filters’) organized linearly,
communicate through character-stream ‘pipes,’ which
are the connectors

  Filters may run concurrently on partial data
  In general, all input comes in through the left and all

output exits from the right

21

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice	

Framework #1: stdio

  Standard I/O framework used in C programming language
  Each process is a filter

  Reads input from standard input (aka ‘stdin’)
  Writes output to standard output (aka ‘stdout’)

  Also a third, unbuffered output stream called standard error
(‘stderr’) not considered here

  Low and high level operations
  getchar(…), putchar(…) move one character at a time
  printf(…) and scanf(…) move and format entire strings

  Different implementations may vary in details (buffering
strategy, etc.)

22

Software Architecture: Foundations, Theory, and Practice	

Evaluating stdio
  Platform support

  Available with most, if
not all, implementations
of C programming
language

  Operates somewhat
differently on OSes with
no concurrency (e.g.,
MS-DOS)

  Fidelity

  Good support for
developing P&F
applications, but no
restriction that apps have
to use this style

  Matching assumptions

  Filters are processes and
pipes are implicit. In-
process P&F applications
might require
modifications

  Efficiency

  Whether filters make
maximal use of
concurrency is partially
up to filter
implementations and
partially up to the OS

23

Software Architecture: Foundations, Theory, and Practice	

Framework #2: java.io

  Standard I/O framework used in Java language
  Object-oriented
  Can be used for in-process or inter-process P&F

applications
  All stream classes derive from InputStream or

OutputStream
  Distinguished objects (System.in and System.out) for

writing to process’ standard streams
  Additional capabilities (formatting, buffering) provided

by creating composite streams (e.g., a Formatting-
Buffered-InputStream)

24

Software Architecture: Foundations, Theory, and Practice	

Evaluating java.io

  Platform support
  Available with all Java

implementations on many
platforms

  Platform-specific
differences abstracted
away

  Fidelity
  Good support for

developing P&F
applications, but no
restriction that apps have
to use this style

  Matching assumptions
  Easy to construct intra-

and inter-process P&F
applications

  Concurrency can be an
issue; many calls are
blocking

  Efficiency
  Users have fine-grained

control over, e.g.,
buffering

  Very high efficiency
mechanisms (memory
mapped I/O, channels)
not available (but are in
java.nio)

25

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

26

Software Architecture: Foundations, Theory, and Practice	

Middleware and Component
Models
  This may all sound similar to various kinds of

middleware/component frameworks
  CORBA, COM/DCOM, JavaBeans, .NET, Java Message

Service (JMS), etc.
  They are closely related

  Both provide developers with services not available in
the underlying OS/language

  CORBA provides well-defined interfaces, portability,
remote procedure call…

  JavaBeans provides a standardized packaging
framework (the bean) with new kinds of introspection
and binding 27

Software Architecture: Foundations, Theory, and Practice	

Middleware and Component
Models (cont’d)
  Indeed, architecture implementation frameworks are

forms of middleware
  There’s a subtle difference in how they emerge and

develop
  Middleware generally evolves based on a set of

services that the developers want to have available
 E.g., CORBA: Support for language heterogeneity,

network transparency, portability
  Frameworks generally evolve based on a particular

architectural style that developers want to use
  Why is this important?

28

Software Architecture: Foundations, Theory, and Practice	

Middleware and Component
Models (cont’d)
  By focusing on services, middleware developers often make other

decisions that substantially impact architecture
  E.g., in supporting network transparency and language

heterogeneity, CORBA uses RPC
  But is RPC necessary for these services or is it just an enabling

technique?
  In a very real way, middleware induces an architectural style

  CORBA induces the ‘distributed objects’ style
  JMS induces a distributed implicit invocation style

  Understanding these implications is essential for not having major
problems when the tail wags the dog!

29

Software Architecture: Foundations, Theory, and Practice	

Resolving Mismatches

  A style is chosen first, but the middleware selected for
implementation does not support (or contradicts) that style

  A middleware is chosen first (or independently) and has undue
influence on the architectural style used

  Strategies
  Change or adapt the style
  Change the middleware selected
  Develop glue code
  Leverage parts of the middleware

and ignore others
  Hide the middleware in components/connectors

30

Use the middleware
as the basis for

a framework

Software Architecture: Foundations, Theory, and Practice	

Hiding Middleware in Connectors

31

Comp 1

Comp 2

Async Event

Comp 1

Comp 2

RPC

(thread)

(thread)

Architecture

Implementation

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

32

Software Architecture: Foundations, Theory, and Practice	

Building a New Framework

  Occasionally, you need a new framework
  The architectural style in use is novel
  The architectural style is not novel but it is being

implemented on a platform for which no framework exists
  The architectural style is not novel and frameworks exist for

the target platform, but the existing frameworks are
inadequate

  Good framework development is extremely difficult
  Frameworks pervade nearly every aspect of your system
  Making changes to frameworks often means changing the

entire system
  A task for experienced developers/architects

33

Software Architecture: Foundations, Theory, and Practice	

New Framework Guidelines

  Understand the target style first
  Enumerate all the rules and constraints in concrete

terms
  Provide example design patterns and corner cases

  Limit the framework to the rules and constraints of the
style
  Do not let a particular target application’s needs creep

into the framework
  “Rule of three” for applications

34

Software Architecture: Foundations, Theory, and Practice	

New Framework Guidelines
(cont’d)

  Choose the framework scope
  A framework does not necessarily have to implement

all possible stylistic advantages (e.g., dynamism or
distribution)

  Avoid over-engineering
  Don’t add capabilities simply because they are clever

or “cool”, especially if known target applications won’t
use them

  These often add complexity and reduce performance

35

Software Architecture: Foundations, Theory, and Practice	

New Framework Guidelines
(cont’d)
  Limit overhead for application developers

  Every framework induces some overhead (classes must
inherit from framework base classes, communication
mechanisms limited)

  Try to put as little overhead as possible on framework
users

  Develop strategies and patterns for legacy systems and
components
  Almost every large application will need to include

elements that were not built to work with a target
framework

  Develop strategies for incorporating and wrapping these

36

Software Architecture: Foundations, Theory, and Practice	

Concurrency

  Concurrency is one of the most difficult concerns to address in
implementation
  Introduction of subtle bugs: deadlock, race conditions…
  Another topic on which there are entire books written

  Concurrency is often an architecture-level concern
  Decisions can be made at the architectural level
  Done carefully, much concurrency management can be

embedded into the architecture framework
  Consider our earlier example, or how pipe-and-filter architectures

are made concurrent without direct user involvement

37

Software Architecture: Foundations, Theory, and Practice	

Generative Technologies

  With a sufficiently detailed architectural model, various
implementation artifacts can be generated
  Entire system implementations

 Requires extremely detailed models including
behavioral specifications

 More feasible in domain-specific contexts
  Skeletons or interfaces

 With detailed structure and interface specifications
  Compositions (e.g., glue code)

 With sufficient data about bindings between two
elements

38

Software Architecture: Foundations, Theory, and Practice	

Maintaining Consistency

  Strategies for maintaining one-way or round-trip mappings
  Create and maintain traceability links from architectural

implementation elements
 Explicit links in a database, in architectural models, in

code comments can all help with consistency checking
  Make the architectural model part of the implementation

 When the model changes, the implementation adapts
automatically

 May involve “internal generation”
  Generate some or all of the implementation from the

architecture

39

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Formulate implementation as a mapping problem
  Delineate the role of architecture implementation

frameworks
  Evaluate implementation frameworks and compare them

to each other
  Understand the role of middleware in software

architecture and when to deploy such solutions
  List the constraints and conditions for new frameworks

40

