
Acknowledgement: Most slides from Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy.

Software Architecture
EECE417

Lecture 1

Learning Objectives

  Define software architecture and its elements
  Distinguish between accidental and essential difficulties

in software and enumerate them
  Compare and contrast software architecture to building

architecture and understand the role of the architect
  Identify essential elements of the architecture of the

WWW and the UNIX pipes and filters paradigm
  Understand software product lines and the role of reuse

in software design

2

What is Software Architecture?

  It’s all about software design
  Architecture is software design, but not all design is

software architecture
 part of the design process

  [Gorton] Architecture focuses on ‘issues that will be
difficult/impossible to change once the system is built’
  E.g., quality attributes like security, performance
  E.g., non-functional requirements like cost,

deployment hardware

Definitions – Taylor et al.

  [Software architecture is] the set of principal design
decisions governing a system

Definitions - ANSI/IEEE Std 1471-2000

  “Architecture is the fundamental organization of a
system, embodied in its components, their
relationships to each other and the environment,
and the principles governing its design and
evolution.”

Definitions - SEI

  “The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software elements, the externally
visible properties of those elements, and the
relationships among them.”

Main point:
 Architecture Defines Structure

  Decomposition of system into components/modules/
subsystems

  Architecture defines:
  Component interfaces

 What a component can do
  Component communications and dependencies

 How components communicate
  Component responsibilities

 Precisely what a component will do

Learning Objectives

  Define software architecture and its elements
  Distinguish between accidental and essential difficulties

in software and enumerate them
  Compare and contrast software architecture to building

architecture and understand the role of the architect
  Identify essential elements of the architecture of the

WWW and the UNIX pipes and filters paradigm
  Understand software product lines and the role of reuse

in software design

8

Software Engineering Difficulties

  Software engineers deal with unique set of problems
  Young field with tremendous expectations
  Building of vastly complex, but intangible systems
  Often software is not useful on its own

 (e.g., unlike a car)
 thus it must conform to changes in other

engineering areas
  Some problems can be eliminated

  “accidental difficulties”
  Other problems can be lessened, but not eliminated

  “essential difficulties”

9

Accidental Difficulties

  Solutions exist
  Possibly waiting to be discovered

  Past productivity increases were the result of overcoming
  Inadequate programming constructs & abstractions

 Remedied by high-level programming languages
 Increased productivity by factor of five
 Complexity was never inherent in program at all

10

Accidental Difficulties (cont’d)

  Past productivity increases were the result of overcoming
(cont’d)
  Inadequate tools:

 E.g., Viewing results of programming decisions
took long time

 Remedied by time–sharing
 Turnaround time approaching limit of human perception

  Difficulty of using heterogeneous programs
 Addressed by integrated software development

environments
 Support task that was conceptually always possible

11

Essential Difficulties

  Only partial solutions exist for them, if any
  Cannot be abstracted away

  Complexity
  Conformity
  Changeability
  Intangibility

12

Complexity

  No two software parts are alike
  If they are, they are abstracted away into one

  Complexity grows super-linearly with size
  E.g., it is impossible to enumerate all states of

program
 Except perhaps “toy” programs

13

Conformity

  Software is required to conform to its
  Operating environment
  Hardware

  Often “last kid on block”
  Perceived as most conformable

14

Changeability

  Software is viewed as infinitely malleable
  Change originates with

  New applications, users, machines, standards, laws
  Hardware problems

15

Intangibility

  Software is not embedded in space
  Often no constraining physical laws

  No obvious representation
  E.g., familiar geometric shapes

16

Promising Attacks On Complexity

  Buy vs. Build
  Requirements refinement & rapid prototyping

  Hardest part is deciding what to build (or buy?)
  Must show product to customer to get complete spec.
  Need for iterative feedback

17

Promising Attacks On Complexity
(cont’d)
  Incremental/Evolutionary/Spiral Development

  Grow systems, don’t build them
  Good for morale
  Easy backtracking
  Early prototypes

  Great designers
  Good design can be taught; great design cannot
  Nurture great designers

18

Learning Objectives

19

Primacy of Design

  Software engineers collect requirements, code, test,
integrate, configure, etc.

  An architecture-centric approach to software engineering
places an emphasis on design
  Design pervades the engineering activity from the

very beginning
  But how do we go about the task of architectural

design?

20

Analogy: Architecture of Buildings

  We all live in them
  (We think) We know how they are built

  Requirements
  Design (blueprints)
  Construction
  Use

  This is similar (though not identical) to how we build
software

21

Some Obvious Parallels

  Satisfaction of customers’ needs
  Specialization of labor
  Multiple perspectives of the final product
  Intermediate points where plans and progress are

reviewed

22

Deeper Parallels

  Architecture is different from, but linked with the
product/structure

  Properties of structures are induced by the design of the
architecture

  The architect has a distinctive role

23

Deeper Parallels (cont’d)

  Process is not as important as architecture
  Design and resulting qualities are at the forefront
  Process is a means, not an end

  Architecture has matured over time into a discipline
  Architectural styles as sets of constraints
  Styles also as wide range of solutions, techniques and

palettes of compatible materials, colors, and sizes

24

More about the Architect

  A distinctive role in a project
  Very broad training
  Amasses and leverages extensive experience
  A keen sense of aesthetics
  Deep understanding of the domain

  Properties of structures, materials, and environments
  Needs of customers

25

More about the Architect (cont’d)

  Even first-rate programming skills are insufficient for the
creation of complex software applications
  But are they even necessary?

26

Limitations of the Analogy…

  We know a lot about buildings, much less about
software

  The nature of software is different from that of building
architecture

  Software is much more malleable than physical materials
  The two “construction industries” are very different
  Software deployment has no counterpart in building

architecture
  Software is a machine; a building is not

27

…But Still Very Real Power of
Architecture
  Giving preeminence to architecture offers the potential

for
  Intellectual control
  Conceptual integrity
  Effective basis for knowledge reuse
  Realizing experience, designs, and code
  Effective project communication
  Management of a set of variant systems

  Limited-term focus on architecture will not yield
significant benefits!

28

Learning Objectives

  Define software architecture and its elements
  Distinguish between accidental and essential difficulties

in software and enumerate them
  Compare and contrast software architecture to building

architecture and understand the role of the architect
  Identify essential elements of the architecture of the

WWW and the UNIX pipes and filters paradigm
  Understand software product lines and the role of reuse

in software design

29

Architecture in Action: WWW

  This is the Web

30

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Architecture in Action: WWW

  So is this

31

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Architecture in Action: WWW

  And this

32

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

WWW in a (Big) Nutshell

  The Web is a collection of resources, each of which has
a unique name known as a “uniform resource
locator” (URL)

  Each resource denotes, informally, some information.
  URI’s can be used to determine the identity of a machine

on the Internet, known as an origin server, where the
value of the resource may be ascertained.

  Communication is initiated by clients, known as user
agents, who make requests to servers.
  Web browsers are common instances of user agents.

33

WWW in a (Big) Nutshell (cont’d)

  Resources can be manipulated through their
representations.
  HTML is a very common representation language

used on the Web.
  All communication between user agents and origin

servers must be performed by a simple, generic protocol
(HTTP), which offers the command methods GET, POST,
etc.

  Communication between user agents and origin servers
is fully self-contained.
  (So-called “stateless interactions”)

34

WWW’s Architecture

  Architecture of the Web is wholly separate from the code
  There is no one piece of code that implements the

architecture.
  There are multiple pieces of code that implement the

various components of the architecture.
  E.g., different Web browsers

35

WWW’s Architecture (cont’d)

  Stylistic constraints of the Web’s architectural style are
not apparent in the code
  The effects of the constraints are evident in the Web

  One of the world’s most successful applications is only
understood adequately from an architectural vantage
point.

36

  Unix command line

 ls invoices | grep -e august | sort !

  Application architecture can be understood based on
very few rules

  Applications can be composed by non-programmers
  Akin to Lego blocks

  A simple architectural concept that can be
comprehended and applied by a broad audience

37

Architecture in Action (2): @ small scale

Learning Objectives

  Define software architecture and its elements
  Distinguish between accidental and essential difficulties

in software and enumerate them
  Compare and contrast software architecture to building

architecture and understand the role of the architect
  Identify essential elements of the architecture of the

WWW and the UNIX pipes and filters paradigm
  Understand software product lines and the role of reuse

in software design

38

Software Product Line

  Motivating example
  A consumer is interested in a 35-inch HDTV with a built-in DVD

player for the North American market.

Such a device might contain upwards of a million lines of
embedded software.

This particular television/DVD player will be very similar to a 35-
inch HDTV without the DVD player, and also to a 35-inch HDTV
with a built-in DVD player for the European market, where the
TV must be able to handle PAL or SECAM encoded broadcasts,
rather than North America’s NTSC format.

These closely related televisions will similarly each have a million
or more lines of code embedded within them.

39

Growing Sophistication of Consumer Devices

40

Families of Related Products

41

The Necessity and Benefit of PLs

  Building each of these TVs from scratch would likely put
Philips out of business

  Reusing structure, behaviors, and component
implementations is increasingly important to successful
business practice
  It simplifies the software development task
  It reduces the development time and cost
  it improves the overall system reliability

  Recognizing and exploiting commonality and variability
across products

42

Reuse as the Big Win

  Architecture: reuse of

  Ideas
  Knowledge
  Patterns
  Engineering

guidance
  Well-worn

experience

  Product families: reuse of

  Structure
  Behaviors
  Implementations
  Test suites…

43

The Centerpiece – Architecture

44

Learning Objectives

  Define software architecture and its elements
  Distinguish between accidental and essential difficulties

in software and enumerate them
  Compare and contrast software architecture to building

architecture and understand the role of the architect
  Identify essential elements of the architecture of the

WWW and the UNIX pipes and filters paradigm
  Understand software product lines and the role of reuse

in software design

45

