
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Introduction to
Modeling

Software Architecture
Lecture 5

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

2

Software Architecture: Foundations, Theory, and Practice	

What is Architectural Modeling?

  Recall that we have characterized architecture as the set of
principal design decisions made about a system

  We can define models and modeling in those terms
  An architectural model is an artifact that captures some or

all of the design decisions that comprise a system’s
architecture

  Architectural modeling is the reification and
documentation of those design decisions

  How we model is strongly influenced by the notations we
choose:
  An architectural modeling notation is a language or

means of capturing design decisions.
3

Software Architecture: Foundations, Theory, and Practice	

How do We Choose What to
Model?

  Architects and other stakeholders must make critical
decisions:
1.  What architectural decisions and concepts should be

modeled,
2.  At what level of detail, and
3.  With how much rigor or formality

–  These are cost/benefit decisions
  The benefits of creating and maintaining an

architectural model must exceed the cost of doing so

4

Software Architecture: Foundations, Theory, and Practice	

Stakeholder-Driven Modeling

  Stakeholders identify
aspects of the system
they are concerned
about

  Stakeholders decide the
relative importance of
these concerns

  Modeling depth should
roughly mirror the
relative importance of
concerns

5

!"#$%&#'(!"#$%&#')!"#$%&#'*!"#$%&#'+!"#$%&#',

From Maier and Rechtin, “The Art of Systems Architecting” (2000)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 1

  Basic architectural elements
  Components
  Connectors
  Interfaces
  Configurations
  Rationale – reasoning behind decisions

6

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 2

  Elements of the architectural style
  Inclusion of specific basic elements (e.g.,

components, connectors, interfaces)
  Component, connector, and interface types
  Constraints on interactions
  Behavioral constraints
  Concurrency constraints
  …

7

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 3

  Static and Dynamic Aspects
  Static aspects of a system do not change as a

system runs
 e.g., topologies, assignment of components/

connectors to hosts, …
  Dynamic aspects do change as a system runs

 e.g., State of individual components or
connectors, state of a data flow through a
system, …

  This line is often unclear
 Consider a system whose topology is relatively

stable but changes several times during system
startup

8

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 4

  Functional and non-functional aspects of a system
  Functional

 “The system prints medical records”
  Non-functional

 “The system prints medical records quickly and
confidentially.”

  Architectural models tend to be functional, but like
rationale it is often important to capture non-functional
decisions even if they cannot be automatically or
deterministically interpreted or analyzed

9

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

10

Software Architecture: Foundations, Theory, and Practice	

Important Characteristics of
Models

  No ambiguity
  A model is ambiguous if it is open to more than one

interpretation
  Accuracy and Precision

  Different, but often conflated concepts
 A model is accurate if it is correct, conforms to

fact, or deviates from correctness within
acceptable limits

 A model is precise if it is sharply exact or
delimited

11

Software Architecture: Foundations, Theory, and Practice	

Accuracy vs. Precision

12
!"#!$#!%#!&#

Inaccurate and
imprecise:

incoherent or
contradictory

assertions

Accurate but
imprecise:

ambiguous or
shallow

assertions

Inaccurate but
precise:
detailed

assertions that
are wrong

Accurate and
precise:
detailed

assertions that
are correct

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Views and Viewpoints

  Generally, it is not feasible to capture everything we
want to model in a single model or document
  The model would be too big, complex, and confusing

  So, we create several coordinated models, each
capturing a subset of the design decisions
  Generally, the subset is organized around a particular

concern or other selection criteria
  We call the subset-model a ‘view’ and the concern (or

criteria) a ‘viewpoint’

13

Software Architecture: Foundations, Theory, and Practice	

Views and Viewpoints Example

14

!"#$"#!"#"$#%&'(%))'*#%&+,-.)'--/%0.*%&'"()(1.')#/%0.*(%))'*#%&(1.')#2345

!"#$%&!'()%*!"#$%&'&()"&$*%##"+,%&-,,(,./"*%#,&%012&.$,*%#,&%0+,-./0&!'()%**%##"+,%&3&%.#/4!5$,"6$*%#,&%07($$(%#809##(#:

Deployment view of a 3-tier
application

Deployment view of a
Lunar Lander system

Both instances of the
deployment viewpoint

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Commonly-Used Viewpoints

  Logical Viewpoints
  Capture the logical (often software) entities in a

system and how they are interconnected.
  Physical Viewpoints

  Capture the physical (often hardware) entities in a
system and how they are interconnected.

  Deployment Viewpoints
  Capture how logical entities are mapped onto physical

entities.

15

Software Architecture: Foundations, Theory, and Practice	

Commonly-Used Viewpoints
(cont’d)

  Concurrency Viewpoints
  Capture how concurrency and threading will be

managed in a system.
  Behavioral Viewpoints

  Capture the expected behavior of (parts of) a
system.

16

Software Architecture: Foundations, Theory, and Practice	

Consistency Among Views
  Views can contain overlapping and related design

decisions
  There is the possibility that the views can thus become

inconsistent with one another
  Views are consistent if the design decisions they contain

are compatible
  Views are inconsistent if two views assert design

decisions that cannot simultaneously be true
  Inconsistency is usually but not always indicative of

problems
  Temporary inconsistencies are a natural part of

exploratory design
  Inconsistencies cannot always be fixed

17

Software Architecture: Foundations, Theory, and Practice	

Example of View Inconsistency

18
!"##$%&'("&)*+!"#,)-+./$%&+.!"#,)-+.0.")%&'123-+#1,$4+/5%6/"4$*'7+-8".6'/5%6 !"#$%&!$#'(%)%*"#'&+,-.(/!$#'0#1&2$'$%3+45&6*#-*7(89%"-.(%&6*#.%*7:;.9(%&+(#-*%-<=0''7(>$%(&?"-@A&+.$BC+D$B(&!0#C8(7(/(.%,&A%*B(--0#1!$#'(%&=*#0.*%)%*"#'&6*#-*7(=0''7(>$%(&?"-@A&+.$BC+D$B(&!0#C

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Common Types of Inconsistencies

  Direct inconsistencies
  E.g., “The system runs on two hosts” and “the system

runs on three hosts.”
  Refinement inconsistencies

  High-level (more abstract) and low-level (more
concrete) views of the same parts of a system conflict

  Static vs. dynamic aspect inconsistencies
  Dynamic aspects (e.g., behavioral specifications)

conflict with static aspects (e.g., topologies)

19

Software Architecture: Foundations, Theory, and Practice	

Common Types of Inconsistencies
(cont’d)
  Dynamic vs. dynamic aspect inconsistencies

  Different descriptions of dynamic aspects of a
system conflict

  Functional vs. non-functional inconsistencies

20

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

21

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches

  Scope and purpose
  What does the technique help you model? What does

it not help you model?
  Basic elements

  What are the basic elements (the ‘atoms’) that are
modeled? How are they modeled?

  Style
  To what extent does the approach help you model

elements of the underlying architectural style? Is the
technique bound to one particular style or family of
styles?

22

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches
(cont’d)

  Static and dynamic aspects
  What static and dynamic aspects of an architecture

does the approach help you model?
  Dynamic modeling

  To what extent does the approach support models
that change as the system executes?

  Non-functional aspects
  To what extent does the approach support (explicit)

modeling of non-functional aspects of architecture?

23

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches
(cont’d)
  Ambiguity

  How does the approach help you to avoid (or
embrace) ambiguity?

  Accuracy
  How does the approach help you to assess the

correctness of models?
  Precision

  At what level of detail can various aspects of the
architecture be modeled?

24

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches
(cont’d)

  Viewpoints
  Which viewpoints are supported by the approach?

  Viewpoint Consistency
  How does the approach help you assess or

maintain consistency among different viewpoints?

25

Software Architecture: Foundations, Theory, and Practice	

Surveying Modeling Approaches

  Generic approaches
  Natural language
  PowerPoint-style modeling
  UML, the Unified Modeling Language

  Early architecture description languages
  Darwin
  Rapide
  Wright

  Domain- and style-specific languages
  Koala
  Weaves
  AADL

  Extensible architecture description languages
  Acme
  ADML
  xADL

26

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

27

Software Architecture: Foundations, Theory, and Practice	

Natural Language

  Spoken/written languages such as English
  Advantages

  Highly expressive
  Accessible to all stakeholders
  Good for capturing non-rigorous or informal architectural

elements like rationale and non-functional requirements
  Plentiful tools available (word processors and other text editors)

  Disadvantages
  Ambiguous, non-rigorous, non-formal
  Often verbose
  Cannot be effectively processed or analyzed by machines/

software

28

Software Architecture: Foundations, Theory, and Practice	

29

Natural Language Example

“The Lunar Lander application consists of three components: a data store
component, a calculation component, and a user interface component.

The job of the data store component is to store and allow other components
access to the height, velocity, and fuel of the lander, as well as the current
simulator time.

The job of the calculation component is to, upon receipt of a burn-rate
quantity, retrieve current values of height, velocity, and fuel from the data
store component, update them with respect to the input burn-rate, and store
the new values back. It also retrieves, increments, and stores back the
simulator time. It is also responsible for notifying the calling component of
whether the simulator has terminated, and with what state (landed safely,
crashed, and so on).

The job of the user interface component is to display the current status of
the lander using information from both the calculation and the data store
components. While the simulator is running, it retrieves the new burn-rate
value from the user, and invokes the calculation component.”

Software Architecture: Foundations, Theory, and Practice	

Related Alternatives

  Ambiguity can be reduced and rigor can be increased
through the use of techniques like ‘statement templates,’
e.g.:
  The (name) interface on (name) component takes (list-of-

elements) as input and produces (list-of-elements) as output
(synchronously | asynchronously).

  This can help to make rigorous data easier to read and interpret,
but such information is generally better represented in a more
compact format

30

Software Architecture: Foundations, Theory, and Practice	

Natural Language Evaluation

31

  Scope and purpose
  Capture design decisions in

prose form
  Basic elements

  Any concepts required
  Style

  Can be described by using
more general language

  Static & Dynamic Aspects
  Any aspect can be modeled

  Dynamic Models
  No direct tie to

implemented/ running
system

  Non-Functional Aspects
  Expressive vocabulary

available (but no way to
verify)

  Ambiguity
  Plain natural language tends to

be ambiguous; statement
templates and dictionaries help

  Accuracy
  Manual reviews and inspection

  Precision
  Can add text to describe any

level of detail
  Viewpoints

  Any viewpoint (but no specific
support for any particular
viewpoint)

  Viewpoint consistency
  Manual reviews and inspection

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

32

Software Architecture: Foundations, Theory, and Practice	

Informal Graphical Modeling

  General diagrams produced in tools like PowerPoint and
OmniGraffle

  Advantages
  Can be aesthetically pleasing
  Size limitations (e.g., one slide, one page) generally constrain

complexity of diagrams
  Extremely flexible due to large symbolic vocabulary

  Disadvantages
  Ambiguous, non-rigorous, non-formal

  But often treated otherwise
  Cannot be effectively processed or analyzed by machines/

software

33

Software Architecture: Foundations, Theory, and Practice	

Informal Graphical Model Example

34

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Related Alternatives

  Some diagram editors (e.g., Microsoft Visio) can be
extended with semantics through scripts and other
additional programming
  Generally ends up somewhere in between a custom

notation-specific editor and a generic diagram editor
  Limited by extensibility of the tool

  PowerPoint Design Editor (Goldman, Balzer) was an
interesting project that attempted to integrate semantics
into PowerPoint

35

Software Architecture: Foundations, Theory, and Practice	

Informal Graphical Evaluation

36

  Scope and purpose
  Arbitrary diagrams

consisting of symbols and
text

  Basic elements
  Geometric shapes, splines,

clip-art, text segments
  Style

  In general, no support
  Static & Dynamic Aspects

  Any aspect can be modeled,
but no semantics behind
models

  Dynamic Models
  Rare, although APIs to

manipulate graphics exist
  Non-Functional Aspects

  With natural language
annotations

  Ambiguity
  Can be reduced through use of

rigorous symbolic vocabulary/
dictionaries

  Accuracy
  Manual reviews and inspection

  Precision
  Up to modeler; generally

canvas is limited in size (e.g.,
one ‘slide’)

  Viewpoints
  Any viewpoint (but no specific

support for any particular
viewpoint)

  Viewpoint consistency
  Manual reviews and inspection

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

37

Software Architecture: Foundations, Theory, and Practice	

UML – the Unified Modeling
Language

  13 loosely-interconnected notations called diagrams that
capture static and dynamic aspects of software-intensive
systems

  Advantages
  Support for a diverse array of viewpoints focused on many

common software engineering concerns
  Ubiquity improves comprehensibility
  Extensive documentation and tool support from many

vendors
  Disadvantages

  Needs customization through profiles to reduce ambiguity
  Difficult to assess consistency among views
  Difficult to capture foreign concepts or views

38

Software Architecture: Foundations, Theory, and Practice	

UML Example

39

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

UML Evaluation

40

  Scope and purpose
  Diverse array of design

decisions in 13 viewpoints
  Basic elements

  Multitude – states, classes,
objects, composite nodes…

  Style
  Through (OCL) constraints

  Static & Dynamic Aspects
  Some static diagrams (class,

package), some dynamic
(state, activity)

  Dynamic Models
  Rare; depends on the

environment
  Non-Functional Aspects

  No direct support; natural-
language annotations

  Ambiguity
  Many symbols are interpreted

differently depending on
context; profiles reduce
ambiguity

  Accuracy
  Well-formedness checks,

automatic constraint checking,
ersatz tool methods, manual

  Precision
  Up to modeler; wide flexibility

  Viewpoints
  Each diagram type represents

a viewpoint; more can be
added through overloading/
profiles

  Viewpoint consistency
  Constraint checking, ersatz

tool methods, manual

