
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Introduction to
Modeling

Software Architecture
Lecture 5

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

2

Software Architecture: Foundations, Theory, and Practice	

What is Architectural Modeling?

  Recall that we have characterized architecture as the set of
principal design decisions made about a system

  We can define models and modeling in those terms
  An architectural model is an artifact that captures some or

all of the design decisions that comprise a system’s
architecture

  Architectural modeling is the reification and
documentation of those design decisions

  How we model is strongly influenced by the notations we
choose:
  An architectural modeling notation is a language or

means of capturing design decisions.
3

Software Architecture: Foundations, Theory, and Practice	

How do We Choose What to
Model?

  Architects and other stakeholders must make critical
decisions:
1.  What architectural decisions and concepts should be

modeled,
2.  At what level of detail, and
3.  With how much rigor or formality

–  These are cost/benefit decisions
  The benefits of creating and maintaining an

architectural model must exceed the cost of doing so

4

Software Architecture: Foundations, Theory, and Practice	

Stakeholder-Driven Modeling

  Stakeholders identify
aspects of the system
they are concerned
about

  Stakeholders decide the
relative importance of
these concerns

  Modeling depth should
roughly mirror the
relative importance of
concerns

5

!"#$%&#'(!"#$%&#')!"#$%&#'*!"#$%&#'+!"#$%&#',

From Maier and Rechtin, “The Art of Systems Architecting” (2000)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 1

  Basic architectural elements
  Components
  Connectors
  Interfaces
  Configurations
  Rationale – reasoning behind decisions

6

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 2

  Elements of the architectural style
  Inclusion of specific basic elements (e.g.,

components, connectors, interfaces)
  Component, connector, and interface types
  Constraints on interactions
  Behavioral constraints
  Concurrency constraints
  …

7

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 3

  Static and Dynamic Aspects
  Static aspects of a system do not change as a

system runs
 e.g., topologies, assignment of components/

connectors to hosts, …
  Dynamic aspects do change as a system runs

 e.g., State of individual components or
connectors, state of a data flow through a
system, …

  This line is often unclear
 Consider a system whose topology is relatively

stable but changes several times during system
startup

8

Software Architecture: Foundations, Theory, and Practice	

What do We Model - 4

  Functional and non-functional aspects of a system
  Functional

 “The system prints medical records”
  Non-functional

 “The system prints medical records quickly and
confidentially.”

  Architectural models tend to be functional, but like
rationale it is often important to capture non-functional
decisions even if they cannot be automatically or
deterministically interpreted or analyzed

9

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

10

Software Architecture: Foundations, Theory, and Practice	

Important Characteristics of
Models

  No ambiguity
  A model is ambiguous if it is open to more than one

interpretation
  Accuracy and Precision

  Different, but often conflated concepts
 A model is accurate if it is correct, conforms to

fact, or deviates from correctness within
acceptable limits

 A model is precise if it is sharply exact or
delimited

11

Software Architecture: Foundations, Theory, and Practice	

Accuracy vs. Precision

12
!"#!$#!%#!&#

Inaccurate and
imprecise:

incoherent or
contradictory

assertions

Accurate but
imprecise:

ambiguous or
shallow

assertions

Inaccurate but
precise:
detailed

assertions that
are wrong

Accurate and
precise:
detailed

assertions that
are correct

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Views and Viewpoints

  Generally, it is not feasible to capture everything we
want to model in a single model or document
  The model would be too big, complex, and confusing

  So, we create several coordinated models, each
capturing a subset of the design decisions
  Generally, the subset is organized around a particular

concern or other selection criteria
  We call the subset-model a ‘view’ and the concern (or

criteria) a ‘viewpoint’

13

Software Architecture: Foundations, Theory, and Practice	

Views and Viewpoints Example

14

!"#$"#!"#"$#%&'(%))'*#%&+,-.)'--/%0.*%&'"()(1.')#/%0.*(%))'*#%&(1.')#2345

!"#$%&!'()%*!"#$%&'&()"&$*%##"+,%&-,,(,./"*%#,&%012&.$,*%#,&%0+,-./0&!'()%**%##"+,%&3&%.#/4!5$,"6$*%#,&%07($$(%#809##(#:

Deployment view of a 3-tier
application

Deployment view of a
Lunar Lander system

Both instances of the
deployment viewpoint

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Commonly-Used Viewpoints

  Logical Viewpoints
  Capture the logical (often software) entities in a

system and how they are interconnected.
  Physical Viewpoints

  Capture the physical (often hardware) entities in a
system and how they are interconnected.

  Deployment Viewpoints
  Capture how logical entities are mapped onto physical

entities.

15

Software Architecture: Foundations, Theory, and Practice	

Commonly-Used Viewpoints
(cont’d)

  Concurrency Viewpoints
  Capture how concurrency and threading will be

managed in a system.
  Behavioral Viewpoints

  Capture the expected behavior of (parts of) a
system.

16

Software Architecture: Foundations, Theory, and Practice	

Consistency Among Views
  Views can contain overlapping and related design

decisions
  There is the possibility that the views can thus become

inconsistent with one another
  Views are consistent if the design decisions they contain

are compatible
  Views are inconsistent if two views assert design

decisions that cannot simultaneously be true
  Inconsistency is usually but not always indicative of

problems
  Temporary inconsistencies are a natural part of

exploratory design
  Inconsistencies cannot always be fixed

17

Software Architecture: Foundations, Theory, and Practice	

Example of View Inconsistency

18
!"##$%&'("&)*+!"#,)-+./$%&+.!"#,)-+.0.")%&'123-+#1,$4+/5%6/"4$*'7+-8".6'/5%6 !"#$%&!$#'(%)%*"#'&+,-.(/!$#'0#1&2$'$%3+45&6*#-*7(89%"-.(%&6*#.%*7:;.9(%&+(#-*%-<=0''7(>$%(&?"-@A&+.$BC+D$B(&!0#C8(7(/(.%,&A%*B(--0#1!$#'(%&=*#0.*%)%*"#'&6*#-*7(=0''7(>$%(&?"-@A&+.$BC+D$B(&!0#C

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Common Types of Inconsistencies

  Direct inconsistencies
  E.g., “The system runs on two hosts” and “the system

runs on three hosts.”
  Refinement inconsistencies

  High-level (more abstract) and low-level (more
concrete) views of the same parts of a system conflict

  Static vs. dynamic aspect inconsistencies
  Dynamic aspects (e.g., behavioral specifications)

conflict with static aspects (e.g., topologies)

19

Software Architecture: Foundations, Theory, and Practice	

Common Types of Inconsistencies
(cont’d)
  Dynamic vs. dynamic aspect inconsistencies

  Different descriptions of dynamic aspects of a
system conflict

  Functional vs. non-functional inconsistencies

20

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

21

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches

  Scope and purpose
  What does the technique help you model? What does

it not help you model?
  Basic elements

  What are the basic elements (the ‘atoms’) that are
modeled? How are they modeled?

  Style
  To what extent does the approach help you model

elements of the underlying architectural style? Is the
technique bound to one particular style or family of
styles?

22

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches
(cont’d)

  Static and dynamic aspects
  What static and dynamic aspects of an architecture

does the approach help you model?
  Dynamic modeling

  To what extent does the approach support models
that change as the system executes?

  Non-functional aspects
  To what extent does the approach support (explicit)

modeling of non-functional aspects of architecture?

23

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches
(cont’d)
  Ambiguity

  How does the approach help you to avoid (or
embrace) ambiguity?

  Accuracy
  How does the approach help you to assess the

correctness of models?
  Precision

  At what level of detail can various aspects of the
architecture be modeled?

24

Software Architecture: Foundations, Theory, and Practice	

Evaluating Modeling Approaches
(cont’d)

  Viewpoints
  Which viewpoints are supported by the approach?

  Viewpoint Consistency
  How does the approach help you assess or

maintain consistency among different viewpoints?

25

Software Architecture: Foundations, Theory, and Practice	

Surveying Modeling Approaches

  Generic approaches
  Natural language
  PowerPoint-style modeling
  UML, the Unified Modeling Language

  Early architecture description languages
  Darwin
  Rapide
  Wright

  Domain- and style-specific languages
  Koala
  Weaves
  AADL

  Extensible architecture description languages
  Acme
  ADML
  xADL

26

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

27

Software Architecture: Foundations, Theory, and Practice	

Natural Language

  Spoken/written languages such as English
  Advantages

  Highly expressive
  Accessible to all stakeholders
  Good for capturing non-rigorous or informal architectural

elements like rationale and non-functional requirements
  Plentiful tools available (word processors and other text editors)

  Disadvantages
  Ambiguous, non-rigorous, non-formal
  Often verbose
  Cannot be effectively processed or analyzed by machines/

software

28

Software Architecture: Foundations, Theory, and Practice	

29

Natural Language Example

“The Lunar Lander application consists of three components: a data store
component, a calculation component, and a user interface component.

The job of the data store component is to store and allow other components
access to the height, velocity, and fuel of the lander, as well as the current
simulator time.

The job of the calculation component is to, upon receipt of a burn-rate
quantity, retrieve current values of height, velocity, and fuel from the data
store component, update them with respect to the input burn-rate, and store
the new values back. It also retrieves, increments, and stores back the
simulator time. It is also responsible for notifying the calling component of
whether the simulator has terminated, and with what state (landed safely,
crashed, and so on).

The job of the user interface component is to display the current status of
the lander using information from both the calculation and the data store
components. While the simulator is running, it retrieves the new burn-rate
value from the user, and invokes the calculation component.”

Software Architecture: Foundations, Theory, and Practice	

Related Alternatives

  Ambiguity can be reduced and rigor can be increased
through the use of techniques like ‘statement templates,’
e.g.:
  The (name) interface on (name) component takes (list-of-

elements) as input and produces (list-of-elements) as output
(synchronously | asynchronously).

  This can help to make rigorous data easier to read and interpret,
but such information is generally better represented in a more
compact format

30

Software Architecture: Foundations, Theory, and Practice	

Natural Language Evaluation

31

  Scope and purpose
  Capture design decisions in

prose form
  Basic elements

  Any concepts required
  Style

  Can be described by using
more general language

  Static & Dynamic Aspects
  Any aspect can be modeled

  Dynamic Models
  No direct tie to

implemented/ running
system

  Non-Functional Aspects
  Expressive vocabulary

available (but no way to
verify)

  Ambiguity
  Plain natural language tends to

be ambiguous; statement
templates and dictionaries help

  Accuracy
  Manual reviews and inspection

  Precision
  Can add text to describe any

level of detail
  Viewpoints

  Any viewpoint (but no specific
support for any particular
viewpoint)

  Viewpoint consistency
  Manual reviews and inspection

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

32

Software Architecture: Foundations, Theory, and Practice	

Informal Graphical Modeling

  General diagrams produced in tools like PowerPoint and
OmniGraffle

  Advantages
  Can be aesthetically pleasing
  Size limitations (e.g., one slide, one page) generally constrain

complexity of diagrams
  Extremely flexible due to large symbolic vocabulary

  Disadvantages
  Ambiguous, non-rigorous, non-formal

  But often treated otherwise
  Cannot be effectively processed or analyzed by machines/

software

33

Software Architecture: Foundations, Theory, and Practice	

Informal Graphical Model Example

34

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Related Alternatives

  Some diagram editors (e.g., Microsoft Visio) can be
extended with semantics through scripts and other
additional programming
  Generally ends up somewhere in between a custom

notation-specific editor and a generic diagram editor
  Limited by extensibility of the tool

  PowerPoint Design Editor (Goldman, Balzer) was an
interesting project that attempted to integrate semantics
into PowerPoint

35

Software Architecture: Foundations, Theory, and Practice	

Informal Graphical Evaluation

36

  Scope and purpose
  Arbitrary diagrams

consisting of symbols and
text

  Basic elements
  Geometric shapes, splines,

clip-art, text segments
  Style

  In general, no support
  Static & Dynamic Aspects

  Any aspect can be modeled,
but no semantics behind
models

  Dynamic Models
  Rare, although APIs to

manipulate graphics exist
  Non-Functional Aspects

  With natural language
annotations

  Ambiguity
  Can be reduced through use of

rigorous symbolic vocabulary/
dictionaries

  Accuracy
  Manual reviews and inspection

  Precision
  Up to modeler; generally

canvas is limited in size (e.g.,
one ‘slide’)

  Viewpoints
  Any viewpoint (but no specific

support for any particular
viewpoint)

  Viewpoint consistency
  Manual reviews and inspection

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural modeling and list elements to model
  Identify important characteristics of models and define

architectural views and consistency
  List the criteria to evaluate modeling approaches
  List the pros and cons of natural language models
  List the pros and cons of power-point models
  List the pros and cons of UML models
  Apply the UML notation to system descriptions

37

Software Architecture: Foundations, Theory, and Practice	

UML – the Unified Modeling
Language

  13 loosely-interconnected notations called diagrams that
capture static and dynamic aspects of software-intensive
systems

  Advantages
  Support for a diverse array of viewpoints focused on many

common software engineering concerns
  Ubiquity improves comprehensibility
  Extensive documentation and tool support from many

vendors
  Disadvantages

  Needs customization through profiles to reduce ambiguity
  Difficult to assess consistency among views
  Difficult to capture foreign concepts or views

38

Software Architecture: Foundations, Theory, and Practice	

UML Example

39

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

UML Evaluation

40

  Scope and purpose
  Diverse array of design

decisions in 13 viewpoints
  Basic elements

  Multitude – states, classes,
objects, composite nodes…

  Style
  Through (OCL) constraints

  Static & Dynamic Aspects
  Some static diagrams (class,

package), some dynamic
(state, activity)

  Dynamic Models
  Rare; depends on the

environment
  Non-Functional Aspects

  No direct support; natural-
language annotations

  Ambiguity
  Many symbols are interpreted

differently depending on
context; profiles reduce
ambiguity

  Accuracy
  Well-formedness checks,

automatic constraint checking,
ersatz tool methods, manual

  Precision
  Up to modeler; wide flexibility

  Viewpoints
  Each diagram type represents

a viewpoint; more can be
added through overloading/
profiles

  Viewpoint consistency
  Constraint checking, ersatz

tool methods, manual

