
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Analysis of
Software Architectures

Software Architecture
Lecture 13

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural analysis and enumerate its goals

  Apply ATAM analysis to software architectures

  Apply Model-Based Analysis to software architecture

  Apply Reliability Analysis to software architecture

  Apply XTEAM Analysis to software architecture

2

Software Architecture: Foundations, Theory, and Practice	

What Is Architectural Analysis?
  Architectural analysis is the activity of discovering

important system properties using the system’s
architectural models.
  Early, useful answers about relevant architectural

aspects
  Available prior to system’s construction

  Important to know
1.  which questions to ask
2.  why to ask them
3.  how to ask them
4.  how to ensure that they can be answered

3

Software Architecture: Foundations, Theory, and Practice	

Concerns Relevant to Architectural
Analysis
  Goals of analysis
  Scope of analysis
  Primary architectural concern being analyzed
  Level of formality of architectural models
  Type of analysis
  Level of automation
  System stakeholders interested in analysis

4

Software Architecture: Foundations, Theory, and Practice	

Architectural Analysis Goals

  The four “C”s
  Completeness
  Consistency
  Compatibility
  Correctness

5

Software Architecture: Foundations, Theory, and Practice	

Architectural Analysis Goals –
Completeness
  Completeness is both an external and an internal

goal
  It is external with respect to system requirements

  Challenged by the complexity of large systems’
requirements and architectures

  Challenged by the many notations used to capture
complex requirements as well as architectures

  It is internal with respect to the architectural intent
and modeling notation
  Have all elements been fully modeled in the

notation?
  Have all design decisions been properly captured?

6

Software Architecture: Foundations, Theory, and Practice	

Architectural Analysis Goals –
Consistency
  Consistency is an internal property of an architectural

model
  Ensures that different model elements do not

contradict one another
  Dimensions of architectural consistency

  Name
  Interface
  Behavior
  Interaction
  Refinement

7

Software Architecture: Foundations, Theory, and Practice	

Name Consistency

  Component and connector names
  Component service names
  May be non-trivial to establish at the architectural level

  Multiple system elements/services with identical
names

  Loose coupling via publish-subscribe or asynchronous
event broadcast

  Dynamically adaptable architectures

8

Software Architecture: Foundations, Theory, and Practice	

Interface Consistency

  Encompasses name consistency
  Also involves parameter lists in component services
  A rich spectrum of choices at the architectural level
  Example: matching provided and required interfaces

 ReqInt: getSubQ(Natural first, Natural last, Boolean remove)

 returns FIFOQueue;

 ProvInt1: getSubQ(Index first, Index last)

 returns FIFOQueue;

 ProvInt2: getSubQ(Natural first, Natural last, Boolean remove)

 returns Queue;

9

Software Architecture: Foundations, Theory, and Practice	

Behavioral Consistency

  Names and interfaces of interacting components may match, but
behaviors need not

  Example: subtraction
 subtract(Integer x, Integer y) returns Integer;

  Can we be sure what the subtract operation does?
  Example: QueueClient and QueueServer components

 QueueClient

 precondition q.size > 0;
 postcondition ~q.size = q.size;

 QueueServer
 precondition q.size > 1;
 postcondition ~q.size = q.size - 1;

10

Software Architecture: Foundations, Theory, and Practice	

Interaction Consistency

11

  Names, interfaces, and behaviors of interacting
components may match, yet they may still be unable
to interact properly

  Example: QueueClient and QueueServer components

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Refinement Consistency

  Architectural models are refined during the design
process

  A relationship must be maintained between higher and
lower level models
  All elements are preserved in the lower level model
  All design decisions are preserved in the lower-level

model
  No new design decisions violate existing design

decisions

12

Software Architecture: Foundations, Theory, and Practice	

Refinement Consistency Example

13

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Architectural Analysis Goals –
Compatibility

  Compatibility is an external property of an architectural
model

  Ensures that the architectural model adheres to
guidelines and constraints of
  a style
  a reference architecture
  an architectural standard

14

Software Architecture: Foundations, Theory, and Practice	

Architectural Analysis Goals –
Correctness
  Correctness is an external property of an architectural model
  Ensures that

1.  the architectural model fully realizes a system
specification

2.  the system’s implementation fully realizes the
architecture

  Inclusion of OTS elements impacts correctness
  System may include structural elements, functionality,

and non-functional properties that are not part of the
architecture

  The notion of fulfillment is key to ensuring architectural
correctness

15

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural analysis and enumerate its goals

  Apply ATAM analysis to software architectures

  Apply Model-Based Analysis to software architecture

  Apply Reliability Analysis to software architecture

  Apply XTEAM Analysis to software architecture

16

Software Architecture: Foundations, Theory, and Practice	

Architectural Inspections and
Reviews

  Architectural models studied by human stakeholders for
specific properties

  The stakeholders define analysis objective
  Manual techniques

  Can be expensive
  Useful in the case of informal architectural descriptions
  Useful in establishing “soft” system properties

  E.g., scalability or adaptability
  Able to consider multiple stakeholders’ objectives and

multiple architectural properties
17

Software Architecture: Foundations, Theory, and Practice	

Inspections and Reviews in a
Nutshell

  Analysis Goals – any
  Analysis Scope – any
  Analysis Concern – any, but particularly suited for non-

functional properties
  Architectural Models – any, but must be geared to

stakeholder needs and analysis objectives
  Analysis Types – mostly static and scenario-based
  Automation Level – manual, human intensive
  Stakeholders – any, except perhaps component vendors

18

Software Architecture: Foundations, Theory, and Practice	

Example – ATAM

  Stands for architectural trade-off analysis method
  Human-centric process for identifying risks early on in

software design
  Focuses specifically on four quality attributes (NFPs)

  Modifiability
  Security
  Performance
  Reliability

  Reveals how well an architecture satisfies quality goals
and how those goals trade-off

19

Software Architecture: Foundations, Theory, and Practice	

ATAM Process

20

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

ATAM Business Drivers

  The system’s critical functionality
  Any technical, managerial, economic, or political

constraints
  The project’s business goals and context
  The major stakeholders
  The principal quality attribute (NFP) goals

21

Software Architecture: Foundations, Theory, and Practice	

ATAM Scenarios
  Use-case scenarios

  Describe how the system is envisioned by the stakeholders
to be used

  Growth scenarios
  Describe planned and envisioned modifications to the

architecture
  Exploratory scenarios

  Try to establish the limits of architecture’s adaptability with
respect to
  system’s functionality
  operational profiles
  underlying execution platforms

  Scenarios are prioritized based on importance to
stakeholders

22

Software Architecture: Foundations, Theory, and Practice	

ATAM Architecture

  Technical constraints
  Required hardware platforms, OS, middleware,

programming languages, and OTS functionality
  Any other systems with which the system must interact
  Architectural approaches that have been used to meet

the quality requirements
  Sets of architectural design decisions employed to

solve a problem
  Typically architectural patterns and styles

23

Software Architecture: Foundations, Theory, and Practice	

ATAM Analysis
  Key step in ATAM
  Objective is to establish relationship between architectural

approaches and quality attributes
  For each architectural approach a set of analysis questions are

formulated
  Targeted at the approach and quality attributes in question

  System architects and ATAM evaluation team work together to
answer these questions and identify
  Risks these are distilled into risk themes
  Non-Risks
  Sensitivity points
  Trade-off points

  Based on answers, further analysis may be performed
24

Software Architecture: Foundations, Theory, and Practice	

ATAM in a Nutshell

Goals
Completeness
Consistency
Compatibility
Correctness`

Scope Subsystem- and system-level
Data exchange

Concern Non-functional
Models Informal

Semi-formal
Type Scenario-driven

Automation Level Manual

Stakeholders
Architects
Developers
Managers
Customers 25

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural analysis and enumerate its goals

  Apply ATAM analysis to software architectures

  Apply Model-Based Analysis to software architecture

  Apply Reliability Analysis to software architecture

  Apply XTEAM Analysis to software architecture

26

Software Architecture: Foundations, Theory, and Practice	

Model-Based Architectural
Analysis
  Analysis techniques that manipulate architectural description to

discover architectural properties
  Tool-driven, hence potentially less costly
  Typically useful for establishing “hard” architectural properties only

  Unable to capture design intent and rationale
  Usually focus on a single architectural aspect

  E.g., syntactic correctness, deadlock freedom, adherence to a
style

  Scalability may be an issue
  Techniques typically used in tandem to provide more complete

answers

27

Software Architecture: Foundations, Theory, and Practice	

Model-Based Analysis in a Nutshell

  Analysis Goals – consistency, compatibility, internal
correctness

  Analysis Scope – any
  Analysis Concern – structural, behavioral, interaction,

and possibly non-functional properties
  Architectural Models – semi-formal and formal
  Analysis Types – static
  Automation Level – partially and fully automated
  Stakeholders – mostly architects and developers

28

Software Architecture: Foundations, Theory, and Practice	

Model-Based Analysis in ADLs

  Wright – uses CSP to analyze for deadlocks
  Aesop – ensures style-specific constraints
  MetaH and UniCon – support schedulability analysis via NFPs such

as component criticality and priority
  ADL parsers and compilers – ensure syntactic and semantic

correctness
  E.g., Rapide’s generation of executable architectural simulations

  Architectural constraint enforcement
  E.g., Armani or UML’s OCL

  Architectural refinement
  E.g., SADL and Rapide

29

Software Architecture: Foundations, Theory, and Practice	

ADLs’ Analysis Foci in a Nutshell

Goals
Consistency
Compatibility
Completeness (internal)

Scope

Component- and connector-level
Subsystem- and system-level
Data exchange
Different abstraction levels
Architecture comparison

Concern

Structural
Behavioral
Interaction
Non-functional

Models Semi-formal
Formal

Type Static

Automation Level Partially automated
Automated

Stakeholders

Architects
Developers
Managers
Customers 30

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural analysis and enumerate its goals

  Apply ATAM analysis to software architectures

  Apply Model-Based Analysis to software architecture

  Apply Reliability Analysis to software architecture

  Apply XTEAM Analysis to software architecture

31

Software Architecture: Foundations, Theory, and Practice	

Architectural Reliability Analysis

  Reliability is the probability that the system will perform its intended
functionality under specified design limits, without failure

  A failure is the occurrence of an incorrect output as a result of an
input value that is received, with respect to the specification

  An error is a mental mistake made by the designer or programmer
  A fault or a defect is the manifestation of that error in the system

  An abnormal condition that may cause a reduction in, or
loss of, the capability of a component to perform a
required function

  A requirements, design, or implementation flaw or
deviation from a desired or intended state

32

Software Architecture: Foundations, Theory, and Practice	

Reliability Metrics

  Time to failure
  Time to repair
  Time between failures

33

Software Architecture: Foundations, Theory, and Practice	

Assessing Reliability at
Architectural Level
  Challenged by unknowns

  Operational profile
  Failure and recovery history

  Challenged by uncertainties
  Multiple development scenarios
  Varying granularity of architectural models
  Different information sources about system usage

  Architectural reliability values must be qualified by assumptions
made to deal with the above uncertainties

  Reliability modeling techniques are needed that deal effectively with
uncertainties
  E.g., Hidden Markov Models (HMMs)

34

Software Architecture: Foundations, Theory, and Practice	

Architectural Reliability Analysis in a
Nutshell

Goals Consistency
Compatibility
Correctness

Scope Component- and connector-level
Subsystem- and system-level

Concern Non-functional
Models Formal

Type Static
Scenario-based

Automation Level Partially automated

Stakeholders
Architects
Managers
Customers
Vendors 35

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural analysis and enumerate its goals

  Apply ATAM analysis to software architectures

  Apply Model-Based Analysis to software architecture

  Apply Reliability Analysis to software architecture

  Apply XTEAM Analysis to software architecture

36

Software Architecture: Foundations, Theory, and Practice	

Simulation-Based Analysis

  Requires producing an executable system model
  Simulation need not exhibit identical behavior to system

implementation
  Many low-level system parameters may be

unavailable
  It needs to be precise and not necessarily accurate
  Some architectural models may not be amenable to

simulation
  Typically require translation to a simulatable language

37

Software Architecture: Foundations, Theory, and Practice	

Architectural and Simulation
Models

38

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Simulation-Based Analysis in a
Nutshell

  Analysis Goals – any
  Analysis Scope – any
  Analysis Concern –behavioral, interaction, and non-

functional properties
  Architectural Models – formal
  Analysis Types – dynamic and scenario-based
  Automation Level – fully automated; model mapping

may be manual
  Stakeholders – any

39

Software Architecture: Foundations, Theory, and Practice	

Example – XTEAM

  eXtensible Tool-chain for Evaluation of Architectural Models
  Targeted at mobile and resource-constrained systems
  Combines two underlying ADLs

  xADL and FSP
  Maps architectural description to adevs

  An OTS event simulation engine
  Implements different analyses via ADL extensions and a model

interpreter
  Latency, memory utilization, reliability, energy consumption

40

Software Architecture: Foundations, Theory, and Practice	

Example XTEAM Model

41

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Example XTEAM Analysis

42

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

XTEAM in a Nutshell

Goals
Consistency
Compatibility
Correctness

Scope
Component- and connector-level
Subsystem- and system-level
Data exchange

Concern

Structural
Behavioral
Interaction
Non-functional

Models Formal

Type Dynamic
Scenario-based

Automation Level Automated

Stakeholders

Architects
Developers
Managers
Customers
Vendors 43

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Closing Remarks
  Architectural analysis is neither easy nor cheap
  The benefits typically far outweigh the drawbacks
  Early information about the system’s key characteristics is

indispensable
  Multiple analysis techniques often should be used in

concert
  “How much analysis?”

  This is the key facet of an architect’s job
  Too many will expend resources unnecessarily
  Too few will carry the risk of propagating defects into

the final system
  Wrong analyses will have both drawbacks

44

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Define architectural analysis and enumerate its goals

  Apply ATAM analysis to software architectures

  Apply Model-Based Analysis to software architecture

  Apply Reliability Analysis to software architecture

  Apply XTEAM Analysis to software architecture

45

