

THE UNIVERSITY OF BRITISH COLUMBIA

EECE 310: Software Engineering

A Brief Introduction to the UML

adapted form Philippe Kruchten's slides

Outline

- Purpose & genesis
- Reminder on objects and classes
- UML elements
- Key UML Diagrams
- From Notation to Code
- UML Tools
- UML References & resources

What is a model?

A miniature representation of something.

 A semantically closed abstraction of a system under study.

A representation of a system that allows for investigation of the properties of the system.

What is UML?

Notation

- Electronics analogy
- Map analogy
- Syntax and semantics
 - Casual notation and formal notation
- Usage:
 - Illustration
 - Forward engineering: Model ⇒ Code
 - Round-trip engineering: Model ⇔ Code

What UML is not

Not a method in itself

- A notation designed to support various methods for requirement analysis and software design
 - E.g., (IBM) Rational Unified Process (RUP)

A Brief History of UML

- Language 'wars' (1985-95):
 - OOPSLA conferences as the main battlefield
- Contenders
 - OMT (JimRumbaugh)
 - Booch method and notation (Grady Booch)
 - OOSE (Ivar Jacobson)
 - OML (Brian Henderson-Sellers)
 - And many others.
- Rational Software and the "three amigos
- Object Management Group (OMG)
- <u>ISO/IEC</u> 19501:2005 Information Technology Standard— Open Distributed Processing — Unified Modeling Language (UML)

Two types of UML diagrams

Key UML diagrams

- Class diagram
- Sequence diagram
- Object diagram
 State diagram or Statechart
 Activity diagram
 Deployment diagram
 Use-case diagram
 Collaboration diagram

In decreasing order of usefulness for the average developer

Visual modeling of a software system

Three views over the system

Functional requirements view

- Emphasizes the functional requirements of the system from the user's point of view.
- Includes <u>use case diagrams</u>.

Static structural view

- Emphasizes the static structure of the system using objects, attributes, operations, and relationships.
- Includes <u>class diagrams</u> and collaboration diagrams

Dynamic behavior view

- Emphasizes the dynamic behavior of the system by showing collaborations among objects and changes to the internal states of objects.
- Includes <u>sequence diagrams</u>, <u>activity diagrams</u> and <u>state machine diagrams</u>.

Elements of UML Diagrams

- Model elements
- Connectors
- Adornments
- Annotations

Reminder: Class

 A description of a set of objects that share the same attributes, operations, methods, relationships, and semantics.

 A class may use a set of interfaces to specify collections of operations it provides to its environment

Reminder: Object

- An entity with a well-defined boundary and identity that encapsulates <u>state</u> and <u>behavior</u>.
 - State is represented by attributes and relationships;
 - Behavior is represented by operations, methods, and state machines.
- An object is an instance of a class.

Modeling elements: class, interface

Types of relationship in class diagrams

Class level:

- Dependency:
 - x depends on y (for implementation, for example)
 - A dependency exists between two defined elements if a change <u>to the definition</u> of one would result in a change to the other.
- Generalization (& specialization):
 - x is a kind of y (taxonomy, subclassing)
- Instance level
 - Association:
 - x is a part of y

Class Level: Dependency and generalization

Instance-Level Relationships

Link

The basic relationship among objects.

- Represented as a line connecting *two or more* object boxes.
- Shown on an object diagram or class diagram.
- A link is an instance of an association.

Association

18

- A relationship that models a bi(or multi)-directional semantic connection among instances.
- An association represents a family of links

Multiplicity

- How many object can be associated
- 1 = exactly one
- 0 .. 1 = optional (zero or one)
- 1 .. N = at least one
- * = 0 .. N = any number
- N
 - For example 4, for 4 wheels in car
- m .. n

Association example

Composition versus Aggregation

Composition versus Aggregation

- Assume A associated with B
- If I destroy an object A, is the associated B also destroyed?
 - Yes? you probably have a composition

 If an object A1 is associated with object B1, can the same object B1 be also associated with another object A2

Yes? you probably have an aggregation

Composition vs. Aggregation

- The whole of a composition must have a multiplicity of 0..1 or 1, indicating that a part must be for only one whole.
 - The whole of an aggregation may have any multiplicity.
- Example:
 - represent real-world whole-part relationships,
 - e.g., an engine is part of a car,
 - \rightarrow the composition relationship is most appropriate.
 - represent database relationship,
 - e.g., car model engine ENG01 is part of a car model CM01,
 - → an aggregation relationship is best, (as the engine. ENG01 may be also part of a different car model)

Other major modeling elements

Collaborations and Use cases

Sequences

States

Notes

Class Diagram

Class Diagram (3)

UBC

More class diagrams

Airport name: String	origin desti-	departing Flights * * arriving	departTin /arrivalTin duration : maxNrPa	me: Time	flights	airline	
	nation	Flights					irline
		pι	assengers * {ordered} Passenger			name:	String
				ger sistance: Boole	an 		UBC
35			book(f:	Flight)			

Sequence diagram

Sequence diagram

Sequence Diagram for a Phone Call

State diagram

41

Instances of a Class (Objects)

Object Diagram

Deployment diagram

Use-case diagram

Component Diagram

UML Extensions

Tools to "do UML"

- Pen and pencil (and eraser) + scanner
- White board and digital camera
- IBM Rational Rose & Rose XDE (\$\$)
- IBM Rational Software Architect (\$\$\$\$)
- Microsoft Visio (\$)
 - use the free Pavel Hruby stencil: http:// www.softwarestencils.com/uml/index.html
- Eclipse UML Plug-in (free)
- Visual Paradigm (free)
- Together Designer (Borland) (free)
- ArgoUML (free)
- and many more, mostly not free

References

Books:

- Martin Fowler: UML Distilled, 3rd ed., AWL
- Grady Booch: UML User's Guide, AWL
- On-line Tutorial & Resources
 - Tutorial David Braun *et al.* (Kennesaw St. U) at: http://pigseye.kennesaw.edu/~dbraun/csis4650/ A&D/UML_tutorial/
 - Scott Ambler's http://www.agilemodeling.com/
 - http://www.uml.org/
 - http://www-306.ibm.com/software/rational/uml/

Deployment Diagram

