
T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 	

1	

EECE 310: Software Engineering

A Brief Introduction to the UML

adapted form Philippe Kruchten’s slides

Outline

  Purpose & genesis
  Reminder on objects and

classes
  UML elements
  Key UML Diagrams
  From Notation to Code
  UML Tools
  UML References & resources

2	

What is a model?

  A miniature representation of something.

  A semantically closed abstraction of a system
under study.

  A representation of a system that allows for
investigation of the properties of the system.

3	

What is UML?

  Notation
•  Electronics analogy
•  Map analogy

  Syntax and semantics
•  Casual notation and formal notation

  Usage:
•  Illustration
•  Forward engineering: Model ⇒ Code
•  Round-trip engineering: Model ⇔ Code

4	

What UML is not

  Not a method in itself
•  A notation designed to support various methods

for requirement analysis and software design
•  E.g., (IBM) Rational Unified Process (RUP)

5	

A Brief History of UML

  Language ‘wars’ (1985-95):
•  OOPSLA conferences as the main

battlefield
  Contenders

•  OMT (JimRumbaugh)
•  Booch method and notation (Grady

Booch)
•  OOSE (Ivar Jacobson)
•  OML (Brian Henderson-Sellers)
•  And many others.

  Rational Software and the “three amigos”
  Object Management Group (OMG)
  ISO/IEC 19501:2005 Information

Technology Standard— Open
Distributed Processing —
Unified Modeling Language
(UML)

6	

Two types of UML diagrams

7	

Models

Dynamic Diagrams (Behavior
and Interaction

Static
Diagrams

Key UML diagrams

  Class diagram
  Sequence diagram

  Object diagram
  State diagram or Statechart
  Activity diagram
  Deployment diagram
  Use-case diagram
  Collaboration diagram

8	

In decreasing order ���
of usefulness for���
the average developer	

Visual modeling of a software system

9	

Actor A Use Case 1
Use Case 2

Actor B

user : Clerk

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository document : Document

gFile : GrpFile

9: sortByName ()

L 1: Doc view request ()
2: fetchDoc()

5: readDoc () 7: readFile ()
3: create ()

6: fillDocument ()

4: create ()
8: fillFile ()

 Window95
¹®¼-°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

 Windows
NT

¹®¼-°ü¸® ¿£Áø.EXE
Windows

NT

Windows95

Solaris
ÀÀ¿ë¼-¹ö.EXE Alpha

UNIX
 IBM

Mainframe
µ¥ÀÌÅ¸º£ÀÌ½º¼-¹ö

Windows95
¹®¼-°ü¸® ¾ÖÇÃ¸´ Document

FileManager

GraphicFile
File

Repository DocumentList

FileList

user mainWnd fileMgr :
FileMgr repository document :

Document gFile
1: Doc view request ()

2: fetchDoc()
3: create ()

4: create ()
5: readDoc ()

6: fillDocument ()
7: readFile ()

8: fillFile ()
9: sortByName ()

Æ¯Á¤¹®¼-¿¡ ´ëÇÑ º¸±â¸¦
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

È-ÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼-ÀÇ Á¤º¸¸¦ ÇØ´ç ¹®¼-
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È-¸é °´Ã¼´Â ÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î
Á¤·ÄÀ» ½ÃÄÑ È-¸é¿¡
º¸¿©ÁØ´Ù. Forward and

Reverse
Engineering

Use Case 3

Use-Case
Diagram Class Diagram

Collaboration
Diagram

Sequence
Diagram

Component
Diagram

State
Diagram

GrpFile
read()
open()
create()
fillFile()

rep
Repository

name : char * = 0
readDoc()
readFile()
(from Persistence)

FileMgr
fetchDoc()
sortByName()

DocumentList
add()
delete() Document

name : int
docid : int
numField : int
get()
open()
close()
read()
sortFileList()
create()
fillDocument() fList

1
FileList

add()
delete()

1

File
read()

read() fill the
code..

Deployment
Diagram

Three views over the system

  Functional requirements view
•  Emphasizes the functional requirements of the system from

the user's point of view.
•  Includes use case diagrams.

  Static structural view
•  Emphasizes the static structure of the system using

objects, attributes, operations, and relationships.
•  Includes class diagrams and collaboration diagrams

  Dynamic behavior view
•  Emphasizes the dynamic behavior of the system by

showing collaborations among objects and changes to the
internal states of objects.

•  Includes sequence diagrams, activity diagrams and
state machine diagrams.

10	

Elements of UML Diagrams

  Model elements
  Connectors
  Adornments
  Annotations

11	

Reminder: Class

  A description of a set of objects that share the
same attributes, operations, methods,
relationships, and semantics.

  A class may use a set of interfaces to specify
collections of operations it provides to its
environment

12	

Reminder: Object

  An entity with a well-defined boundary and
identity that encapsulates state and
behavior .
•  State is represented by attributes and

relationships;
•  Behavior is represented by operations, methods,

and state machines.
  An object is an instance of a class.

13	

Modeling elements: class, interface

14	

Types of relationship in class diagrams

  Class level:
•  Dependency:

•  x depends on y (for implementation, for example)
•  A dependency exists between two defined elements if

a change to the definition of one would result in a
change to the other.

•  Generalization (& specialization):
•  x is a kind of y (taxonomy, subclassing)

  Instance level
•  Association:

•  x is a part of y
15	

Class Level: Dependency and generalization

16	

Instance-Level Relationships

Link
  The basic relationship among objects.

•  Represented as a line connecting two or more
object boxes.

•  Shown on an object diagram or class diagram.
•  A link is an instance of an association.

17	

Association

  A relationship that models a bi(or multi)-directional
semantic connection among instances.

  An association represents a family of links

18	

Multiplicity

  How many object can be associated
  1 = exactly one
  0 .. 1 = optional (zero or one)
  1 .. N = at least one
  * = 0 .. N = any number
  N

•  For example 4, for 4 wheels in car
  m .. n

19	

Association example

20	

Two Special Associations

  Aggregation = grouping (e.g., “by reference”)

  Composition = is made of (e.g., “by value”)

21	

Composition versus Aggregation

22	

Course	
 Instructor	

Car	
 Carburetor	

?	

?	

Composition versus Aggregation

23	

Course	
 Instructor	

Car	
 Carburetor	

Composition 	

Aggregation 	

Composition versus Aggregation

  Assume A associated with B

  If I destroy an object A, is the associated B
also destroyed?
•  Yes? you probably have a composition

  If an object A1 is associated with object B1,
can the same object B1 be also associated
with another object A2
•  Yes? you probably have an aggregation

24	

Composition vs. Aggregation

  The whole of a composition must have a multiplicity
of 0..1 or 1, indicating that a part must be for only
one whole.
•  The whole of an aggregation may have any multiplicity.

  Example:
•  represent real-world whole-part relationships,

•  e.g., an engine is part of a car,
•  the composition relationship is most appropriate.

•  represent database relationship,
•  e.g., car model engine ENG01 is part of a car model

CM01,
•  an aggregation relationship is best, (as the engine,

ENG01 may be also part of a different car model)
25	

Packages

26	

Other major modeling elements

27	

Collaborations and Use cases

28	

Sequences

29	

States

30	

Notes

31	

Class Diagram

32	

Class Diagram (2)

33	

Class Diagram (3)

34	

Names
Basic

Elements

Process
Structure

Process
Components Guidance

Process
Lifecycle

More class diagrams

35	

Airport

Flight

Passenger

Airline

*

*
*

*

$minAge: Integer
age: Integer
needsAssistance: Boolean

departTime: Time
/arrivalTime: Time
duration : Interval
maxNrPass: Integer

origin

desti-
nation

name: String

name: String

{ordered}

arriving
Flights

departing
Flights

flights

passengers

book(f : Flight)

airline

Class diagram with operations

36	

Connection	

id : int	

state : ConnState	

duration : int	

disconnect(l : Line) : void	

addLine(l : Line) : void	

Line	

number : int	

state : LineState	

incomingCall(c : Connection) : void	

hungUp(p : Phone) : void	

pickedUp(p : Phone) : void	

addPhone(p : Phone) : void	

2..*	
 0..1	
2..*	
 0..1	

Phone	

state : PhoneState	

name : string	

selectLine(num : int) : void	

pickup() : void	

hangup() : void	

ring() : void	

dial(num : int) : void	

addLine(l : Line) : void	

1	

1..*	
 1	
onConnection	

1..*	

1	

0..*	

selected	

1	

0..*	

1..*	
0..*	
 1..*	
0..*	

linkedLines	

Switch	

name : string	

getPhone(name : string) : Phone	

getLine(number : string) : Line	

addLine(num : String) : void	

addPhone(p : Phone) : void	

linkLinePhone(name : string, num : int) : void	

newCall(l1 : Line, l2 : Line) : void	

completeConn(l : Line, c : Connection) : void	

destroyConn(c : Connection) : void	

0..*	

1	

0..*	

1	

manages	

0..*	

1	

0..*	

1	

manages	

0..*	

1	

0..*	

1	

manages	

Simulator	

processCmds(in : istream)	

0..*	

1	

0..*	

1	

controls	

1	

1	
 1	

1	

controls	

Sequence diagram

37	

Sequence diagram

38	

Observer pattern	

Collaborati
on
diagram

39	

Sequence
diagram	

Sequence Diagram for a Phone Call

40	

State diagram

41	

off

on

off

on

Instances of a Class (Objects)

42	

triangle : Polygon	

center : Point = (2,2)���
vertices : Point* = ((0,0), (4, 0), (2,4))	

borderColor : Color = black	

fillColor : Color = white	

triangle : Polygon	

triangle	

: Polygon	

underlined name	

attribute links	

Object Diagram

43	

Deployment diagram

44	

Use-case diagram

45	

Activity Diagram

46	

Component Diagram

47	

UML Extensions

48	

Exercise

49	

Tools to “do UML”

  Pen and pencil (and eraser) + scanner
  White board and digital camera
  IBM Rational Rose & Rose XDE ($$)
  IBM Rational Software Architect ($$$$$)
  Microsoft Visio ($)

•  use the free Pavel Hruby stencil: http://
www.softwarestencils.com/uml/index.html

  Eclipse UML Plug-in (free)
  Visual Paradigm (free)
  Together Designer (Borland) (free)
  ArgoUML (free)
  …. and many more, mostly not free

50	

51	

52	

References

  Books:
•  Martin Fowler: UML Distilled, 3rd ed., AWL
•  Grady Booch: UML User’s Guide, AWL

  On-line Tutorial & Resources
•  Tutorial David Braun et al. (Kennesaw St. U) at:

http://pigseye.kennesaw.edu/~dbraun/csis4650/
A&D/UML_tutorial/

•  Scott Ambler’s http://www.agilemodeling.com/
•  http://www.uml.org/
•  http://www-306.ibm.com/software/rational/uml/

53	

Deployment Diagram

54	

