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A Brief Introduction to the UML 

adapted form Philippe Kruchten’s slides 
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What is a model? 

  A miniature representation of something. 

  A semantically closed abstraction of a system 
under study. 

  A representation of a system that allows for 
investigation of the properties of the system.  
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What is UML? 

  Notation 
•  Electronics analogy 
•  Map analogy 

  Syntax and semantics 
•  Casual notation and formal notation 

  Usage: 
•  Illustration 
•  Forward engineering: Model  ⇒ Code 
•  Round-trip engineering: Model  ⇔  Code 
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What UML is not  

  Not a method in itself  
•  A notation designed to support various methods 

for requirement analysis and software design 
•  E.g., (IBM) Rational Unified Process (RUP) 
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A Brief History of UML 

  Language ‘wars’ (1985-95):  
•  OOPSLA conferences as the main 

battlefield 
  Contenders 

•  OMT (JimRumbaugh) 
•  Booch method and notation (Grady 

Booch) 
•  OOSE (Ivar Jacobson) 
•  OML (Brian Henderson-Sellers) 
•  And many others. 

  Rational Software and the “three amigos” 
  Object Management Group (OMG) 
  ISO/IEC 19501:2005 Information 

Technology Standard— Open 
Distributed Processing — 
Unified Modeling Language 
(UML) 
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Two types of UML diagrams 
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Models 

Dynamic Diagrams (Behavior 
and Interaction 

Static 
Diagrams 



Key UML diagrams 

  Class diagram 
  Sequence diagram 

  Object diagram 
  State diagram or Statechart 
  Activity diagram 
  Deployment diagram 
  Use-case diagram 
  Collaboration diagram 
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Visual modeling of a software system 
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Three views over the system 

  Functional requirements view 
•  Emphasizes the functional requirements of the system from 

the user's point of view. 
•  Includes use case diagrams. 

  Static structural view 
•  Emphasizes the static structure of the system using 

objects, attributes, operations, and relationships. 
•  Includes class diagrams and collaboration diagrams 

  Dynamic behavior view 
•  Emphasizes the dynamic behavior of the system by 

showing collaborations among objects and changes to the 
internal states of objects. 

•  Includes sequence diagrams, activity diagrams and 
state machine diagrams. 
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Elements of UML Diagrams 

  Model elements 
  Connectors 
  Adornments 
  Annotations 
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Reminder: Class 

  A description of a set of objects that share the 
same attributes, operations, methods, 
relationships, and semantics. 

  A class may use a set of interfaces to specify 
collections of operations it provides to its 
environment  

12	




Reminder: Object 

  An entity with a well-defined boundary and 
identity that encapsulates state and 
behavior .  
•  State is represented by attributes and 

relationships;  
•  Behavior is represented by operations, methods, 

and state machines.  
  An object is an instance of a class.  
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Modeling elements: class, interface 
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Types of relationship in class diagrams 

  Class level: 
•  Dependency:  

•  x depends on y (for implementation, for example) 
•  A dependency exists between two defined elements if 

a change to the definition of one would result in a 
change to the other. 

•  Generalization (& specialization): 
•   x is a kind of y  (taxonomy, subclassing) 

  Instance level 
•  Association:  

•  x is a part of y 
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Class Level: Dependency and generalization 
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Instance-Level Relationships  

Link 
  The basic relationship among objects.  

•  Represented as a line connecting two or more 
object boxes.  

•  Shown on an object diagram or class diagram.  
•  A link is an instance of an association. 
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Association 

  A relationship that models a bi(or multi)-directional 
semantic connection among instances.  

  An association represents a family of links  
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Multiplicity 

  How many object can be associated 
  1 = exactly one 
  0 .. 1  = optional (zero or one) 
  1 .. N  = at least one 
  *  =  0 .. N = any number 
  N 

•  For example 4, for 4 wheels in  car 
  m .. n 
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Association example 
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Two Special Associations 

  Aggregation = grouping (e.g., “by reference”)  

  Composition = is made of (e.g., “by value”)  
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Composition versus Aggregation 
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Composition versus Aggregation 
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Composition versus Aggregation 

  Assume A associated with B 

  If I destroy an object A, is the associated B 
also destroyed? 
•  Yes? you probably have a composition 

  If an object A1 is associated with object B1, 
can the same object B1 be also associated 
with another object A2 
•  Yes? you probably have an aggregation 
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Composition vs. Aggregation 

  The whole of a composition must have a multiplicity 
of 0..1 or 1, indicating that a part must be for only 
one whole.  
•  The whole of an aggregation may have any multiplicity. 

  Example:  
•  represent real-world whole-part relationships,  

•  e.g., an engine is part of a car,  
•  the composition relationship is most appropriate.  

•  represent database relationship,  
•  e.g., car model engine ENG01 is part of a car model 

CM01, 
•  an aggregation relationship is best, (as the engine, 

ENG01 may be also part of a different car model) 
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Packages 
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Other major modeling elements 
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Collaborations and Use cases 
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Sequences 
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States 
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Notes 
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Class Diagram 
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Class Diagram (2) 
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Class Diagram (3) 
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More class diagrams 
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Class diagram with operations 
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Sequence diagram 

37	




Sequence diagram 
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Sequence Diagram for a Phone Call  
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State diagram 

41	


off 

on 

off 

on 



Instances of a Class (Objects) 
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Object Diagram 
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Deployment diagram 
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Use-case diagram 
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Activity Diagram 
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Component Diagram 
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UML Extensions 
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Exercise 
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Tools to “do UML” 

  Pen and pencil (and eraser) + scanner 
  White board and digital camera 
  IBM Rational Rose & Rose XDE ($$) 
  IBM Rational Software Architect ($$$$$) 
  Microsoft Visio ($) 

•  use the free Pavel Hruby stencil: http://
www.softwarestencils.com/uml/index.html 

  Eclipse UML Plug-in (free) 
  Visual Paradigm (free) 
  Together Designer (Borland) (free) 
  ArgoUML (free) 
  …. and many more, mostly not free 
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Deployment Diagram 
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