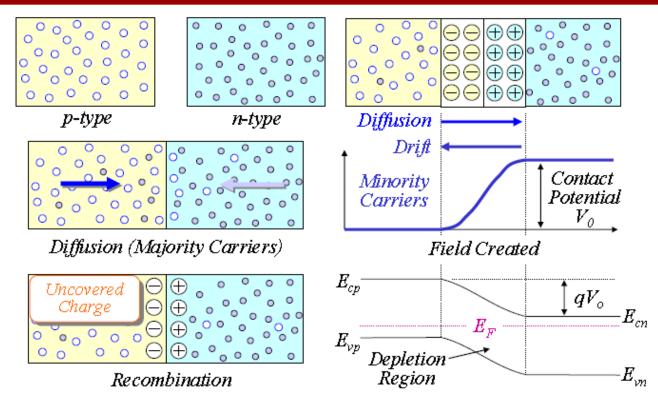
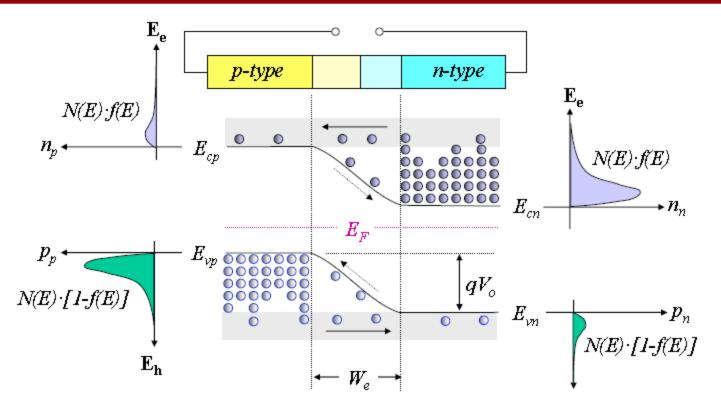

EECE 481

MOS Basics Lecture 2

Reza Molavi Dept. of ECE University of British Columbia reza@ece.ubc.ca


Slides Courtesy : Dr. Res Saleh (UBC), Dr. D. Sengupta (AMD), Dr. B. Razavi (UCLA)

PN Junction and Diodes


- The difference in the concentration of carriers in *p*, and *n*-type semi-conductors (i.e. gradient) causes diffusion of electrons from *n* to *p* and holes from *p* to *n* leaving immobile ions behind
- The region at junction where majority carriers are removed due to this diffusion, is called the *depletion* or *space-charge region*

PN Junction Basics

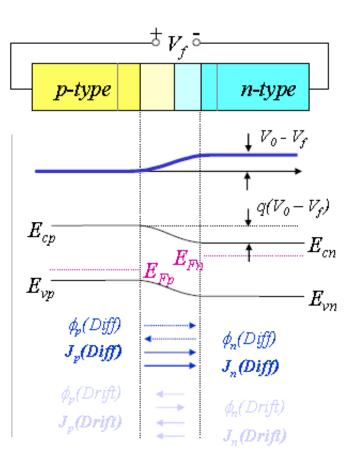
- The charges in both regions create an electric field across the boundary of junction to counteract the diffusion of majority carriers
- -This electric field creates a potential across the junction called contact or barrier potential

PN Junction - Equilibrium

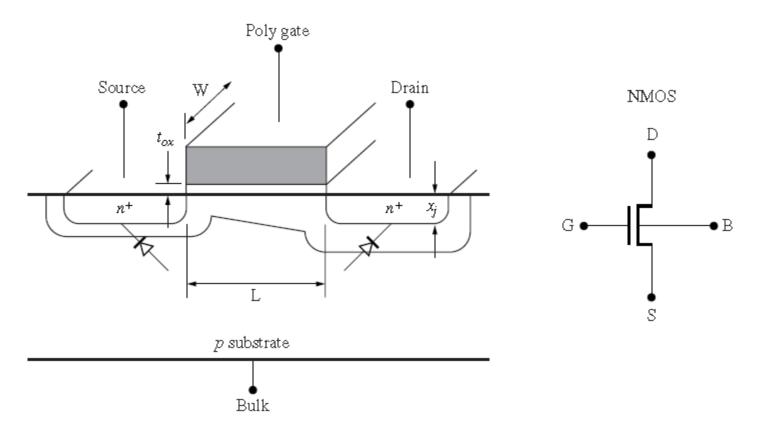
Majority carriers are abundant at equilibrium (on either side) but can not diffuse to the other side due to the existence of barrier potential

PN Junction – Forward Bias

The potential barrier is decreased by V_f

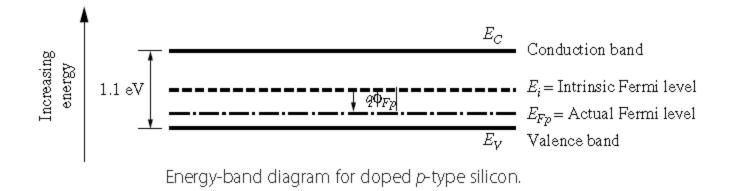

The depletion region decreases in size

The device is no longer in an equilibrium condition so the Fermi level is not constant across the device

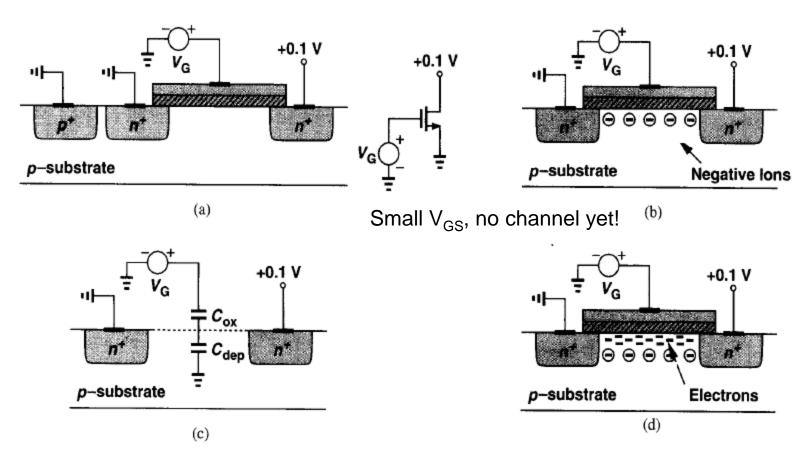

The quasi-Fermi levels are separated by qV_{f.}

The field within the depletion region decreases

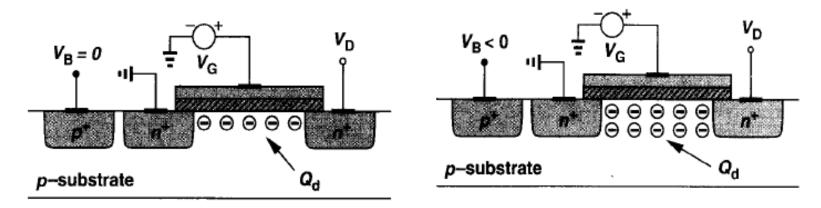
Some carriers in the high-energy "tail" of the distribution have enough energy to diffuse to the opposite side


MOS Transistor Basics

The source and drain regions (n+) and substrate (p) in NMOS transistor create


two back-to-back diodes at equilibrium (therefore, requires external stimulus for any conduction)

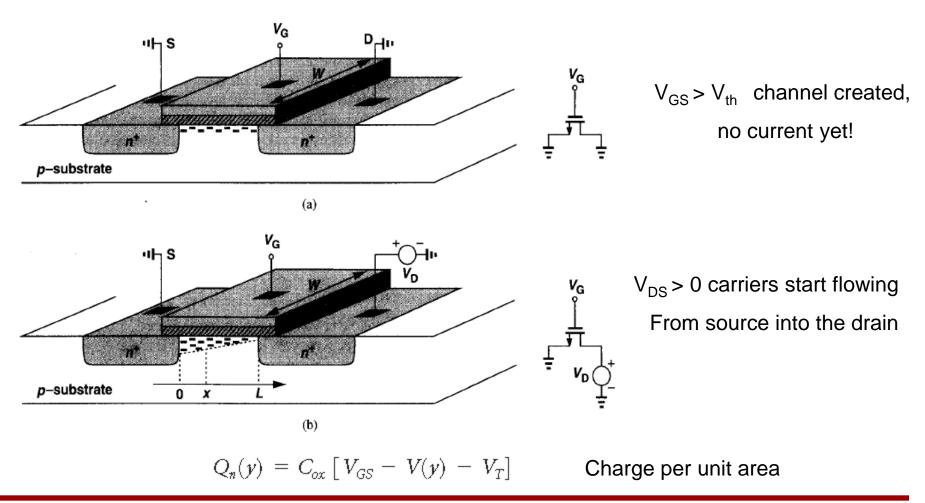
Definition of Threshold Voltage


- We need to apply an external voltage to turn the *p*-type substrate into an *n*-type substrate to create a channel for conduction
- As we apply a positive V_{GS} the substrate is first depleted under the gate area (immobile ions)
- Further increase of V_{GS} creates a conducting layer of minority carriers under the gate
- The V_{GS} voltage required to make the surface of the substrate "as much *n*-type as the rest of substrate is *p*" is called Threshold Voltage

Definition of Threshold Voltage

The onset of inversion in NMOS transistor (creation of channel under the gate in (d)

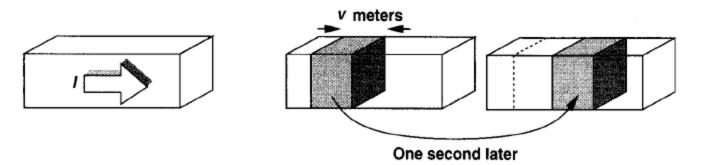
Effect of Body bias on Threshold Voltage



Application of negative voltage to bulk attracts holes and leaves behind "negatively charged ions"
As a result, there should be more positive charge on gate plate to mirror the negative ions in the substrate and more positive voltage is required to create the channel, i.e. V_{TH} increases

$$V_{T0} + \gamma (\sqrt{V_{SB} + |2\phi_F|} - \sqrt{|2\phi_F|})$$

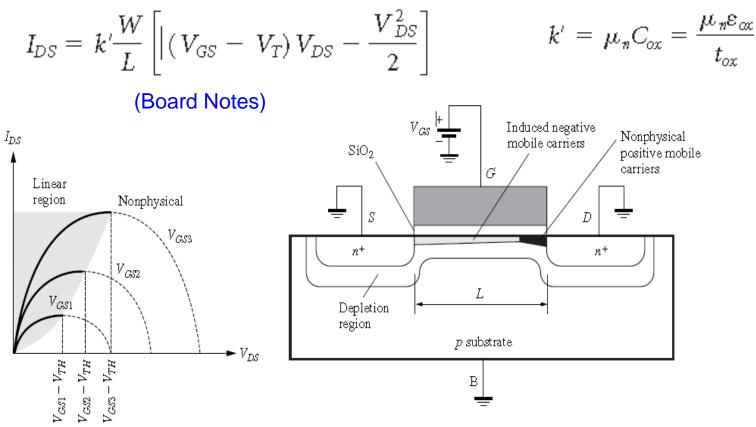
where $\gamma = \frac{1}{C_{cx}} \sqrt{2q\epsilon_{si}N_A}$ body-effect coefficient


MOS Current Calculation

MOS Current Calculation

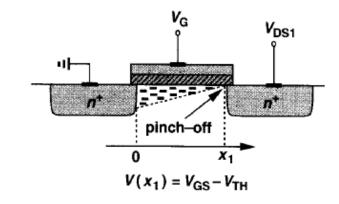
 $Q_d = WQ_n(y)$

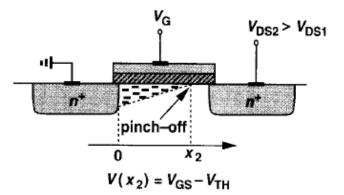
Charge density along direction of current

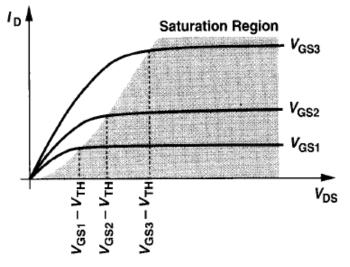

 $I=Q_d\cdot v.$

 $v = \mu E$ where $E = \frac{dV(y)}{dy}$

Total charge in the grey box (amount of charge hat passes through the channel in 1 second)

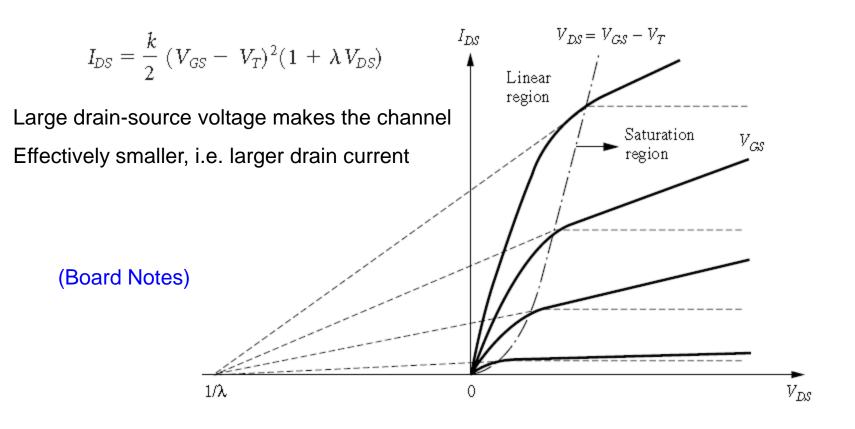

$$I_{DS} = C_{ox} \left[\left(V_{GS} - V(y) \right) - V_T \right] \times \mu_n E \times W$$


MOS Current Calculation



This equation predicts roll-off after reaching a peak due to the existence of non-physical positive carriers. Therefore, the equation must be adjusted after V_{DS} reaches V_{GS} - V_T

MOS Current in Saturation



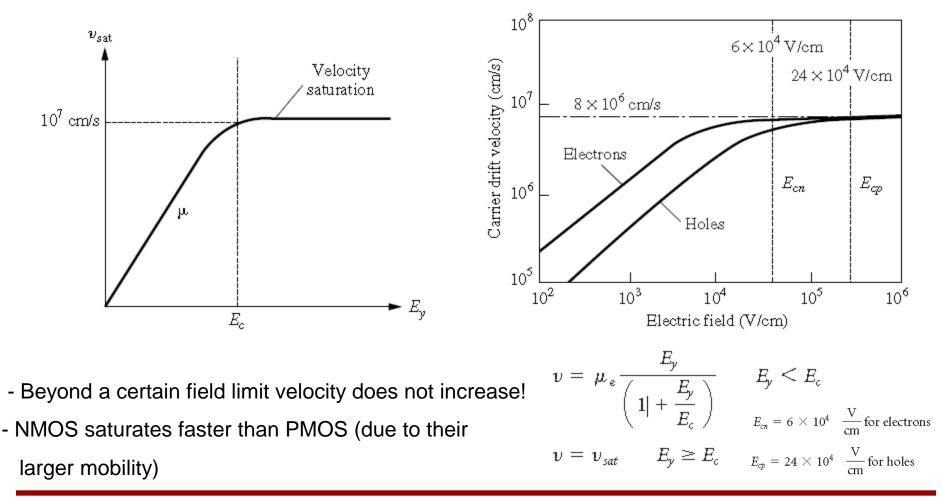
If we increase V_{DS} beyond V_{GS} - V_{T} , The local potential difference is not enough to sustain the inverted channel. The channel is "pinched-off "

After the pinch-off is reached, the current stays relatively constant!

Channel-length Modulation $(I_{DS}$ dependence on $V_{DS})$

Large E Fields in Short Channel Devices

198019952001
$$E_y = \frac{5V}{5\mu m} = 10^4 \,\text{V/cm}$$
 $E_y = \frac{3.3V}{0.35\,\mu m} = 9.4 \times 10^4 \,\text{V/cm}$ $E_y = \frac{1.2V}{0.1\,\mu m} = 1.2 \times 10^5 \,\text{V/cm}$


Horizontal Electric field (between the source and drain) = V_{DS} (= V_{dd}) / L

198019952001
$$E_x = \frac{5V}{1000 \text{ Å}} = 50 \times 10^4 \text{ V/cm}$$
 $E_x = \frac{3.3V}{75 \text{ Å}} = 4.4 \times 10^6 \text{ V/cm}$ $E_x = \frac{1.2V}{22 \text{ Å}} = 5.5 \times 10^6 \text{ V/cm}$

Vertical Electric field (between the gate and channel) = V_{GS} (= V_{dd}) / t_{ox}

Large electrical field causes an early velocity saturation for carriers in short channel devices

Velocity Saturation

Short-Channel MOS Current

 $I_{DS} = W \times Q_n \times v$

General current of short channel MOS

$$= W \times C_{ox}(V_{GS} - V_T - V(y)) \left(\frac{\mu_e E_y}{1 + \frac{E_y}{E_c}}\right) \qquad \text{where } E_y = \frac{dV(y)}{dy}$$

Plugging in and re-arranging produces

$$I_{DS} dy = W \mu_e \bigg[C_{ox} (V_{GS} - V_T - V(y)) - \frac{I_{DS}}{W \mu_e E_c} \bigg] dV(y)$$

After integration, we obtain

$$I_{DS} = \frac{W}{L} \frac{\mu_e C_{ox}}{\left(1 + \frac{V_{DS}}{E_c L}\right)} \left(V_{GS} - V_T - \frac{V_{DS}}{2}\right) V_{DS}$$

Similar to long channel device except for an extra term in denominator

Cont'd

 $I_{DS} = W \times Q_n \times v_{sat}$ Current of short channel MOS in saturation Since the current is the same throughout the channel we can set $V(y) = V_{DS}$ and write

$$I_{DS} = W \times C_{ox} (V_{GS} - V_T - V_{DS}) v_{sat}$$

Equating this current and that of previous slide gives the required V_{DS} for saturation

$$V_{Dsat} = \frac{(V_{GS} - V_T) E_c L}{(V_{GS} - V_T) + E_c L}$$

Always smaller than V_{GS} - V_T indicates early saturation

(Board Notes)

Example From Hodges and Saleh Textbook

NMOS and PMOS Saturation Voltages for 0.18 μ m Technology

Problem:

Consider a 0.18 μ m technology. Compute the values of V_{Dsat} for the NMOS and PMOS device assuming $V_{GS} = 1.8$ V, $V_{TN} = 0.5$ V, $V_{TP} = -0.5$ V. Assume the channel length is 200 nm for convenience.

Solution:

Using (2.22), we find that $E_{co}L_o = 6 \times 10^4$ (0.2 μ m) ≈ 1.2 V and $E_{cp}L_p = 24 \times 10^4$ (0.2 μ m) ≈ 4.8 V.Using (2.28),

NMOS:
$$V_{Dsat} = \frac{(1.8 - 0.5)(1.2)}{(1.8 - 0.5 + 1.2)} \approx 0.6$$

PMOS:

$$V_{Dsat} = \frac{(1.8 - 0.5)(4.8)}{(1.8 - 0.5 + 4.8)} \approx 1.0 \text{ V}$$

- Note how fast NMOS saturates (at VDS of 0.6 rather than 1.3 (1.8-0.5)
- Note the difference between NMOS and PMOS

٧

Summary

- Semi-conductor devices typically possess an inherent barrier of current and a control knob (voltage) to remove the barrier.
- Threshold Voltage is the required gate-source voltage to invert the substrate to the opposite type, i.e. p to n for NMOS and n and to p for PMOS to create a conductive channel.
- As V_{DS} increases the MOS devices are first in linear(triode region) and then enter saturation regime (relatively constant current, channel length modulation still applies).
- Large Electrical fields (both vertical and horizontal) causes early saturation of DSM devices.
- For short-channel devices the I_{DS} - V_{GS} relationship is more linear rather than quadratic.