EECE 481

MOS Basics – part 2
Lecture 3

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Dr. Res Saleh (UBC), Dr. D. Sengupta (AMD), Dr. B. Razavi (UCLA)
MOS Current - Review

In general, the saturation region is entered when either the channel is pinched-off or the carriers achieved velocity saturation.

\[
I_{DS} = W \bar{v}_{sat} C_{ox} \frac{(V_{GS} - V_T)^2}{(V_{GS} - V_T) + E_c L} \quad \text{saturation}
\]

\[
I_{DS} = \frac{W}{L} \cdot \frac{\mu_e C_{ox}}{1 + \frac{V_{DS}}{E_c L}} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} \quad \text{linear}
\]

Note that in extreme case \((E_c L >> V_{GS}, V_{DS})\) both equations translate to those of long channel devices.
MOS Current – Short Channel Effects

The mobility of electrons is 4X higher than that of holes, i.e. in long channel regime the current of 1X NMOS is 4times a 1X PMOS

However, early velocity saturation of electrons makes this ratio smaller in short channel devices

\[
\frac{I_{DSN}}{I_{DSP}} = \frac{W_N \nu_{sat} C_{ox} (V_{GS} - V_{TN})^2}{W_P \nu_{sat} C_{ox} (V_{GS} - V_{TP})^2} \frac{1}{(V_{GS} - V_{TN} + E_{CN} L_N)} \frac{1}{(V_{GS} - V_{TP} + E_{CP} L_P)}
\]

Roughly 2.4 for short channel devices
MOS Current - Sub threshold

Transistor turn-on/turn-off switching is a continuous process. At around V_{th} (and even below it) there is still significant leakage current.

What is an ideal slope n and slope factor?
MOS Capacitances

- Each MOS device possess several junction and oxide capacitances (depends on dielectric and geometry) specified in units of fF/µm

- The charge/discharge of internal capacitances limits the switching speed
Gate (Oxide) Capacitance and DSM Evolution

\[C_G = WLC_\alpha = WL\frac{\varepsilon_\alpha}{t_\alpha} = WC_g \]

Gate Capacitance

5µm CMOS

\[C_g = C_\alpha L = \frac{\varepsilon_\alpha}{t_\alpha} = \frac{(4)(8.85 \times 10^{-14})}{1100} \quad (5 \, \mu m) \approx 1.6 \, fF/\mu m \]

0.35µm CMOS

\[C_g = C_\alpha L = \frac{\varepsilon_\alpha}{t_\alpha} = \frac{(4)(8.85 \times 10^{-14})}{75} \quad (0.35 \, \mu m) \approx 1.6 \, fF/\mu m \]

0.18µm CMOS

\[C_g = C_\alpha L = \frac{\varepsilon_\alpha}{t_\alpha} = \frac{(4)(8.85 \times 10^{-14})}{22} \quad (0.1 \, \mu m) \approx 1.6 \, fF/\mu m \]

The unit capacitance has remained constant over two decades! (part of constant field scaling plan introduced in 1970)
Gate Capacitance in different regions of operation

The total capacitance \(C_g \) is broken into three components \(C_{gb}, C_{gs}, \) and \(C_{gd} \)

Why Does \(C_{gs} \) and \(C_{ds} \) change as we move from one region of operation to another?

(Board Notes)

<table>
<thead>
<tr>
<th></th>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{gs})</td>
<td>0</td>
<td>(\frac{1}{2} C_{ox}/W/L)</td>
<td>(\frac{2}{3} C_{ox}/W/L)</td>
</tr>
<tr>
<td>(C_{gd})</td>
<td>0</td>
<td>(\frac{1}{2} C_{ox}/W/L)</td>
<td>0</td>
</tr>
<tr>
<td>(C_{gb})</td>
<td>(C_{ox}/W/L)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Junction Capacitance

A pn junction when forward biased shows the following I-V characteristics

$$I_D = I_S(e^{V_j/V_B} - 1)$$

A pn junction when reverse-biased has a leakage current and a wider depletion region resulting in a voltage-dependent junction capacitor

$$I_D = -I_S$$

Capacitance of a pn junction

$$C_j = \frac{C_{j0} A}{\left(1 - \frac{V_j}{\phi_B}\right)^m}$$

(in case of abrupt junction $m=1/2$)

Diode (junction) built-in potential

$$\phi_B = \frac{kT}{q} \ln\left|\frac{N_A N_D}{n_i^2}\right|$$

Junction capacitance vs junction potential

$$C_{j0} = \sqrt{\frac{\varepsilon_{si} q}{2\phi_B} \frac{N_A N_D}{N_A + N_D}}$$
Junction Capacitance

\[A_b = WY \]
\[A_{sw} = Wx_j \]

Bottom plate area

Sidewall area

If this is a voltage-dependant capacitance, how do model it as the device switches between different voltages?

1) Standard average (arithmetic mean)

2) Calculate the effective capacitance from \(C_{eff} = \Delta Q / \Delta V \)

\[C_{eq} = - \frac{C_{jb}\Phi_B}{(V_2 - V_1)(1 - m)} \left[\left(1 - \frac{V_2}{\Phi_B} \right)^{1-m} - \left(1 - \frac{V_1}{\Phi_B} \right)^{1-m} \right] \]

(Board Notes)
Junction Capacitance Calculations

Problem:

(a) Find ϕ_B and C_{jb} for an n^+p junction diode with $N_D = 10^{20}$ cm$^{-3}$ and $N_A = (3)10^{17}$ cm$^{-3}$.

Solution:

From Equation (2.37),

$$\phi_B = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2} = 0.026 \ln \left(\frac{3(10^{17})(10^{20})}{(1.45(10^{10}))^2} \right) = 1 \text{ V}$$

From Equation (2.39)

$$C_{jb} = \sqrt{\frac{\varepsilon_s q N_A N_D}{2 \phi_B (N_A + N_D)}} \approx \sqrt{\frac{\varepsilon_s q N_A}{2 \phi_B}}$$

$$= \sqrt{11.7 \times (8.85)(10^{-14}) \times 1.6(10^{-19})(3)(10^{17})} \approx 1.6 \frac{\text{fF}}{\mu \text{m}^2}$$
Problem:

(b) For a 0.13 \(\mu \text{m} \) process, \(W = 400 \text{ nm} \), \(L = 100 \text{ nm} \), \(x_j = 50 \text{ nm} \), and the diffusion extension is \(Y = 300 \text{ nm} \). Using the layout of Figure 2.20, find \(C_j \) in units of fF for and \(V_j = 0 \) and \(V_j = -1.2 \text{ V} \).

Solution:

For \(V_j = 0 \), the value is obtained by multiplying \(C_{jb} \) with \((Y + x_j)W \)

\[
C_j = C_{jb}(Y + x_j)W = 1.6 \text{ fF/} \mu \text{m}^2 \times (0.3 \mu \text{m} + 0.05 \mu \text{m}) \times 0.4 \mu \text{m} \approx 0.22 \text{ fF}
\]

For \(V_j = -1.2 \),

\[
C_j = \frac{C_{jb}(Y + x_j)W}{(1 - V_j/\phi_b)^m} = \frac{1.6 \text{ fF/} \mu \text{m} \times (0.3 \mu \text{m} + 0.05 \mu \text{m}) \times 0.4 \mu \text{m}}{(1 + 1.2/1.0)^{1/2}} \approx 0.16 \text{ fF}
\]

Exercise: Use the integral (effective capacitance technique) and compare against the average here
Overlap Capacitance

- The lateral diffusion creates an overlap between gate and drain (source areas) creating a parasitic capacitance called *overlap* capacitance.

- The proximity of drain (source) regions to the sidewall of gate in DSM contact creates another parasitic cap called *fringe* capacitance.

\[
C_{ol} = C_{ov} + C_f
\]

\[
C_f = \frac{2\varepsilon_ox}{\pi} \ln \left(1 + \frac{T_{poly}}{t_{ox}} \right)
\]

\[
C_{ov} = C_{ox} \times L_D
\]

EECE 481 Lecture 3
Summary

- The current capability ratio of NMOS and PMOS decreases (due to velocity saturation) as we move further into short channel regime.
- There is an exponential dependence of leakage current on V_{GS} in sub threshold region.
- A MOS device has three main physical types of capacitance
 - The gate-oxide capacitance is re-distributed between source and drain, i.e. C_{GS} and C_{DS} vary, as device moves from linear to saturation region.
 - The junction capacitance is voltage-dependant; we need to find an effective (average) capacitance for switching devices.
 - The overlap/fringe capacitance becomes more important in DSM technologies.