EECE 481

Design of Resistive-Load Inverter (Noise-margin-centric approach) Lecture 5

Reza Molavi Dept. of ECE University of British Columbia reza@ece.ubc.ca

Slides Courtesy : Dr. Res Saleh (UBC), Dr. D. Sengupta (AMD), Dr. B. Razavi (UCLA)

Multi Stage Noise Margin (MSNM) - Review

 Noise actually occurs between every gate and not at a single stage, as we have assumed so far

- In the above circuit, we need to determine how much noise we can tolerate before the circuit stops working as expected
- We note that $V_{out} = f(V_{in})$
- With noise V_{out} ' = f(V_{in}) + V_{noise} x Gain + Higher-order terms
- If the Gain < 1, then noise is attenuated; otherwise it is amplified
- IDEA: Develop a metric based on keeping the Gain < 1

Classical Noise Margin - Review

Requirements for a Valid Logic Gate - Review

- Must have a high gain region between two low gain regions
- Gain must be below 1 for low gain regions
- Gain must be greater than 1 for high gain region
- Output must swing from valid low to valid high
 - Low output should be below V_{IL}
 - High output should be above V_{IH}

Generic Structure of MOS inverters

Basic structure of MOS inverter is shown below: NMOS pulldown device with a variety of possible pullup devices

We will derive the noise margin parameters for different types of inverters

Resistive-Load Inverter Design "5 Point Technique"

How to plot VTC from load line representation?

- 1) Find the two extremes of output voltage, e.g. V_{OH} and V_{OL} (be careful with the MOS region of operation for each derivation)
- 2) Express the V_{out}-V_{in} relationship (usually the current equations of the devices provides that) and find points where $\delta V_{out} / \delta V_{in} = -1$ (V_{IH} and V_{IL})
- 3) Find the switching point where $V_{in}=V_{out}=V_S$
- 4) Plot VTC using the values of five points and calculate NM as $V_{OH}-V_{IH}$ and $V_{IL}-V_{OL}$

Let's apply the technique to resistive-load inverter design

- 1) The extremes
- Remember that in inverters an input value of V_{OH} (it is the output of previous stage) creates an output of V_{OL} and vice versa, hence we first find the easier of the two, i.e. the more straightforward one, and then replace it in expression of $I_{OUT}=I_{load}$ to find the other one
- At one extreme the transistor is off hence no current, $V_{OH} = V_{DD}$
- At the other extreme we use $V_{in}=V_{OH}=V_{DD}$ in the expression of $I_{OUT}=I_{load}$ to find the V_{OL}

$$I_{R} = I_{DS}(lin)$$

Substituting in the expressions for the resistor current and NMOS current:

$$\frac{V_{DD} - V_{OL}}{R_L} = \frac{W_N}{L_N} \frac{\mu_n C_{ox}}{2\left(1 + \frac{V_{OL}}{E_L}\right)} [2(V_{OH} - V_T)V_{OL} - V_{OL}^2]$$

We know VOL is very small so for your calculations we can ignore it (Engineering approximations are IMPORTANT!)

setting $k = (W/L) \mu_n C_{ox}$:

$$\frac{V_{DD} - V_{OL}}{R_L} = \frac{k}{2} [2(V_{OH} - V_T) V_{OL} - V_{OL}^2]$$

Board Notes

Knowing that $V_{OH}=V_{DD}$ and neglecting V_{OL}^2

$$V_{OL} \approx \frac{V_{DD}}{1 + kR_L(V_{DD} - V_T)}$$

Q: What should V_{OL} ideally be? What are the engineering trade-offs to make it happen?

Note that we always trade-off power, area, timing and noise margin versus one another

2. Now, let's derive $V_{\text{\rm IL}}$

Note that these values are now input voltages corresponding to $\delta V_{out}/\delta V_{in} = -1$

Step 1: detect the region of MOS operation

For V_{IL} the input is still considered low and output voltage is near V_{DD} (large V_{DS})

$$I_{R} = I_{DS} \left(\text{sat} \right)$$

$$\frac{V_{DD} - V_{out}}{R_L} = \frac{W v_{sat} C_{ox} (V_{in} - V_T)^2}{(V_{in} - V_T) + E_C L}$$

Board Notes

Use engineering intuition again: $V_{in} - V_T$ is small

Recalling that $v_{sat} = \mu E_C/2$ Setting $k = (W/L)\mu_n C_{OX}$

Now differentiate with respect to V_{in} , set $\delta V_{out}/\delta V_{in} = -1$, and $V_{in}=V_{IL}$

$$V_{IL} = V_T + \frac{1}{kR_L}$$

Let's look at NM_L now:

$$V_{\rm IL} = V_{\rm T} + \frac{1}{kR_{\rm I}} \qquad \qquad V_{\rm OL} \approx \frac{V_{\rm DD}}{1 + kR_{\rm L}(V_{\rm DD} - V_{\rm T})} \label{eq:VIL}$$

Q: Do you see the problem with noise margin optimization? (change k and R_L to get a higher NM_L)

Q: Which one would be a higher priority?

Board Notes

2. Now, let's derive V_{IH}

Step 1: detect the region of MOS operation

For V_{IH} the output voltage is near 0V, small V_{DS} , Linear region of operation

$$\frac{W}{L} \frac{\mu_n C_{ox}}{\left(1 + \frac{V_{out}}{E_C L}\right)} \left[\left(V_{in} - V_T\right) V_{out} - \frac{V_{out}^2}{2} \right] = \frac{V_{DD} - V_{out}}{R_L}$$

Simplification using Engineering intuition $k \left[(V_{in} - V_T) V_{out} - \frac{V_{out}^2}{2} \right] \approx \frac{V_{DD} - V_{out}}{R_L}$ $V_{IH} = V_T + \sqrt{\frac{8 V_{DD}}{3kR_L}} - \frac{1}{kR_L}$ Differentiation $\delta V_{out} / \delta V_{in} = -1$ $k \left[(V_{in} - V_T) \frac{\partial V_{out}}{\partial V_{in}} + V_{out} - V_{out} \frac{\partial V_{out}}{\partial V_{in}} \right] = -\frac{1}{R_L} \frac{\partial V_{out}}{\partial V_{in}}$ $V_{IH} = V_T + 2 V_{out} - \frac{1}{kR_L}$ What is V_{out} here?

3. In order to complete the derivation and plot the VTC we only need V_S now (switching point)

Q: what is the MOS region of operation at switching point? Why?

$$I_R = I_{DS} \quad \text{and} \quad V_{\text{in}} = V_{\text{out}} = V_S$$
$$\frac{W v_{\text{sat}} C_{ox} (V_S - V_T)^2}{(V_S - V_T) + E_C L} = \frac{V_{DD} - V_S}{R_L}$$

Side discussion: How to solve higher-order equation?

- Deterministic equations
- Iteration technique
- SPICE

