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Combinational MOS Logic 

• Now that we understand the logic abstraction and the properties of valid logic gates, 
we can consider the issues of design basic building blocks of digital systems 

• Typical combinational gate is a multiple input – single output system 

• Performs Boolean operations on multiple input variables, drives one or more gates 

• Design parameters and considerations: 

– Propagation delay 

– Static and dynamic power 

– Area 

– Noise margins (VTC) 
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Pull-up and Pull-down Networks 

• PMOS pull-up and NMOS pull-down networks are duals of each other  

• Configuration of pull-up and pull-down networks create a current 
connection from the output to either Vdd or Gnd, based on the inputs  

• PMOS devices have lower drive capability and thus require wider 
devices to achieve the same on-resistance as its pull-down counterpart 
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Static CMOS Logic Gates 

• These are the most common type of static gates 

• Can implement any Boolean expression with these two gates 

• Why is static CMOS so popular? 

– It’s very robust!  

– it will eventually produce the right answer 

– Power, shrinking VDD, more circuit noise, process variations, etc. 

limit use of other design styles 
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More Properties of Static CMOS Logic 

• Fully complementary 

• Low static power dissipation! 

• Outputs swing full rail – Vdd (VOH) to Gnd (VOL) 

• Works fine at low Vdd voltages 

– But lower Vdd = less current = slower speed 

• Combinational operation 

– Feed it some inputs, wait some delay, result comes out 

– No clocks required for normal operation 

• Moderately good performance 

– Drive strength is proportional to transistor size 

– Large loads require large W 

• Dual logic networks for N- and P-Channel devices 
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“Beta Ratio” for Static Gates 

• The ratio between the NMOS and PMOS device is called the beta ratio 

• We need to size CMOS static gates to deliver a target speed. But how? 

• Start by sizing the inverter to deliver the target speed, then map size to gate 

• Suppose: 

Reqp (PMOS)  2.5 Reqn (NMOS) under identical conditions 

  (actually Reqp=30kW and Reqn=12.5kW) 

• Then ratio between PMOS:NMOS should be 2.5:1 

• Beta ratio sets: 

– Switching point of the gate output drive  

– Input capacitance 

– L-to-H vs. H-to-L transition times 

– Usually find a 2:1 ratio in CMOS inverter 

 

W

2W Is 2:1 the right ratio?

For equal rise and fall times.

How about for minimum delay?
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NAND and NOR Sizing 
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Inverter NAND NOR 

• Drive strength determined by device widths - W (assume L is minimum size) 

• For the moment, consider only CL(we are ignoring the device self-capacitance) 

• Pick the right sizes for the basic inverter and then assign values to gates 

• What does that mean for parallel and series combinations? 

– For parallel transistors, direct mapping from inverter 

– For series transistors, need to compute equivalent sizes 

First Design Inverter Then Map Results to Gates 
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Equivalent Sizes 
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Consider a three-input NAND gate (NMOS portion only): 
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VTC and Noise Margins 
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Complex Logic Circuits 

• The ability to easily build complex logic gates is one of the most 

attractive features of MOS logic circuits 

• Design principle of the pull-down network: 

– OR operations are performed by parallel connected drivers 

– AND operations are performed by series connected drivers 

– Inversion is provided by the nature of MOS circuit operation 

• Don’t get too carried away… Use this knowledge wisely 

– Remember that complex functions don’t have to be 

implemented with a single gate 

– Can break up very complicated Boolean expressions into a 

cascade of gate stages 

– Limit series stacks to 3~4 

• We will use De Morgan’s Law to build the dual networks 
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Review of DeMorgan’s Law 

• De Morgan’s theorem: 

 The complement of any logic function is found by complementing 

all input variables and replacing all AND operations with OR and all 

OR operations with AND 

• Use De Morgan’s law to find the complement of a function for the pull-

down network (if needed) 

• Use Duality to find the pull-up network 
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Complex CMOS Gate Design Example 

• Implement an AND-OR-INVERT (AOI)  function 

             Z = (A • B + C) 

• Get the expression into forms that enable easy implementation of  pull-
up and pull-down networks 

              Z = (A  B +C)                 Z = (A + B)  C 

pull-up
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XOR and XNOR Gates 
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CMOS Multiplexer  
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The Bad News 

• Slows down dramatically for large fanins due to long series 

stack of transistors 

– fanin = number of inputs 

– PMOS series stacks worse than nMOS series stacks 

• Large number of transistors 

– 2n devices for n-input NAND 

– At least 2 devices per input 

• Bigger layout 

– n+ to p+ spacing rule and well spacing rule 

– Large device sizes required to counteract series stack 

• Limit the fanin to 3 or 4…or delay and area will be too large 



16 EECE481  Lecture 08 

 

Eight-Input AND gate 
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Multi-level Logic Implementations 

NAND2-INV-NAND2-INV NAND2-NOR2-NAND2-INV 

• There are many more options to try 

• Which is the best?  We need a quick way of answering this question 
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Pseudo-NMOS Logic – NOR gate 
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• Design issues: 

– Sizing Ratio  

• Ratio pull-up to pull-down (VOL & VOH) 

• Propagation delay  

– Subthreshold current can degrade VOH slightly 

– VOL decreases as more devices turning on 
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Pseudo-nMOS Logic – NAND Gate 
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• Issues 

– Sizing Ratio 

• Need to make pull-down devices wider 

– Parasitic cap goes up with bigger devices 

– Lower devices in stack slower compared to upper ones because 

they see more capacitance 
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AND8 Option - Use Pseudo-NMOS 
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Properties of Static Pseudo-NMOS Gates 

• DC power 

– always conducting current when output is low 

• VOL and VOH depend on sizing ratio and input states 

• Poor low-to-high transition 

• Large fanin NAND gates tend to get big due to ratioing 

• As transistor count increases, power consumption is too high 

– Cannot use this approach for all gates on the chip 

• But what are its advantages? 

– Good for wide NOR structures 

• Memory decoder 

– Smaller number of transistors (area) / logic function 
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Flip-flops and latches are important logic elements used for storage 

We typically build finite state machines from combinational logic (next state logic) 

and latches or flip-flops (storage elements) to store the state information. 

 

 

 

 

We then control latches and flip-flops with a clock to create synchronous logic 

circuits. The clock ensures that we can tell the difference between previous, 

current and future states of the logic circuit 
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Latch vs. Flip-flop 

Latch (level-sensitive, transparent) 

When the clock is high it passes In value to Out 

When the clock is low, it holds value that In had when the clock fell 

Flip-Flop (edge-triggered, non transparent) 

On the rising edge of clock (pos-edge trig), it transfers the value of In to Out 

It holds the value at all other times. 
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FF Clocking Overhead 

D in 

Clk 

Qout 

T setup  + T clk-q 

T hold 

will work Flip Flop won’t work 

may work 

FF have setup and hold times that must be satisfied: 

If Din arrives before setup time and is stable after the hold time, FF will work; if Din 

arrives after hold time, it will fail; in between, it may or may not work; FF delays the 

slowest signal by the setup + clk-q delay in the worst case 
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Latch Clocking Overhead 

Latch 

T d-q 

T hold 

T setup   

Latches also have setup and hold times that must be satisfied: 

 

But latch has small setup and hold times; however, it delays the late arriving signals 

by Td-q and this is more important than the setup and hold times. 

D in 

Clk 

Qout 



26 EECE481  Lecture 08 

 

SR Latch with NOR Gates 

• Simplest FF is a cross-coupled pair of NOR gates 

• When S=1, Q=1 

• When R=1, Q=0 

• By setting both S=0 and R=0, the previous state is held 

• Illegal state occurs when R=1 and S=1 (actually, the final state 

is determined by which signal goes low last) 
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SR Latch with NAND Gates 

• Similar to NOR latch except that the signals are active low 

• Illegal state is now S=0 and R=0 

• Hold state is S=1 and R=1  
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JK Flip-flop 

• To avoid illegal state, use JK flip-flop 

• In NAND implementation, J=K=1 flips the state of the output 

• Clock is used to enable the output 

• Will oscillate if clock is high too long when J=K=1 
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Master-Slave JK Flip-flop 

• Cascade of two JK Flip-flops 

• Master activated by CK, Slave activated by CK 

• Master latches new data, slave launches old data 
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Clocked D Flip-flop 

• Very useful FF 

• Widely used in IC design for temporary storage of data 

• May be edge-triggered (Flip-flop) or  level-sensitive (transparent D-

latch) 
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