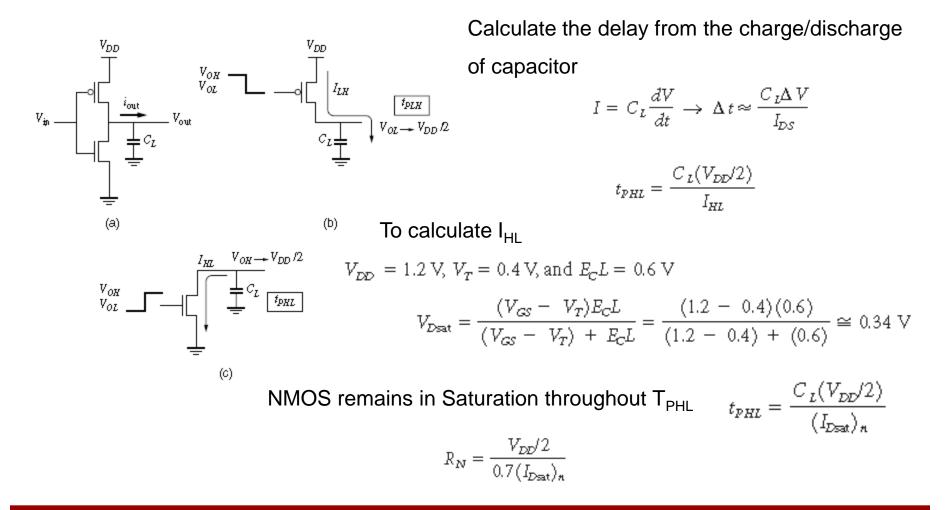
EECE 481

High-Speed CMOS Gate Design Lecture 9

Reza Molavi Dept. of ECE University of British Columbia reza@ece.ubc.ca

Slides Courtesy : Dr. Res Saleh (UBC), Dr. D. Sengupta (AMD), Dr. B. Razavi (UCLA)

Effective Resistance Calculations



Effective Resistance Calculations

Problem:

Using 0.13 $\mu\rm m$ technology parameters, compute R_{eqn} and R_{eqp} from the equations above for unit-sized devices.

Solution:

For the NMOS device,

$$I_{Dsat} = \frac{W_N v_{sat} C_{ox} (V_{DD} - V_{TN})^2}{(V_{DD} - V_{TN}) + E_{CN} L_N}$$

= $\frac{(0.1) (10^{-4}) 8 (10^6) 1.6 (10^{-6}) (1.2 - 0.4)^2}{(1.2 - 0.4) + 0.6} \approx 60 \ \mu \text{A}$
 $\therefore R_{eqp} = \frac{1.2/2}{0.7 (60 \ \mu \text{A})} = 14.5 \ \text{k}\Omega$

For the PMOS device,

$$I_{Dsat} = \frac{W_{\rho}v_{sat}C_{ox}(V_{DD} - |V_{TP}|)^{2}}{(V_{DD} - |V_{TP}|) + E_{CP}L_{\rho}}$$

= $\frac{(0.1)(10^{-4})8(10^{6})1.6(10^{-6})(1.2 - 0.4)^{2}}{(1.2 - 0.4) + 2.4} \approx 25 \ \mu \text{A}$
 $\therefore R_{eqp} = \frac{1.2/2}{0.7(25 \ \mu \text{A})} = 33.5 \ \text{k}\Omega$

The HSPICE

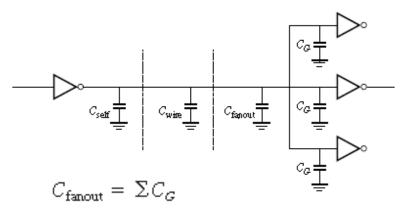
Numbers of 12.5k-ohms

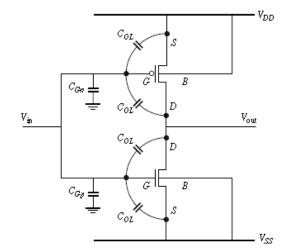
And 30k-ohm

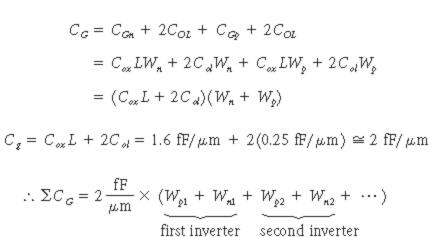
Load Capacitance Calculations

"Fanout Gate Capacitance"

Each gate connected to the output of a CMOS gate (driver) presents a capacitive load, when all summed termed as "*Fanout Gate Capacitance*"

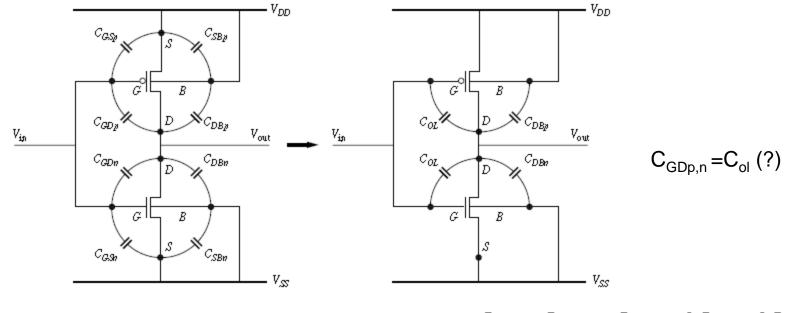






Load Capacitance Calculations - II

"Self Capacitance"

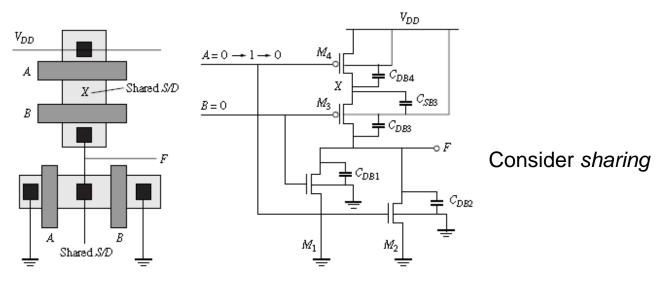


Another term in load caclulations is the load presented by The driver itself (all capacitances connected to V_{out}) We have to consider Miller effect! In calculating C_{self}

 $C_{\text{xff}} = C_{DBn} + C_{DBp} + 2C_{OL} + 2C_{OL}$ $= C_{jn}W_n + C_{jp}W_p + 2C_{ol}(W_n + W_p)$ $= C_{\text{eff}}(W_n + W_p)$

(Board Notes)

Load Capacitance for NAND and NOR

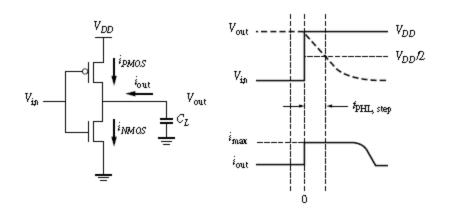


What is worst-case capacitance calculations, why does it matter for speed calculations?

$$C_{\text{self}} = \underbrace{C_{DB1} + C_{DB2}}_{n^{+}\text{shared SVD}} + \underbrace{C_{DB3} + C_{SB3} + C_{DB4}}_{p^{+}\text{shared SVD}}$$
$$= C_{DB12} + C_{DB3} + C_{SDB34}$$

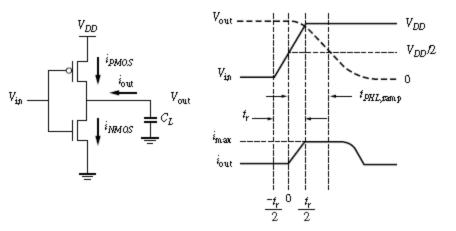
Example: what is the worst case input and output capacitance for a NAND3 CMOS gate (Board Notes)

Response of Inverter to a Ramp voltage change



Response of an inverter to a step V_{in}

We modeled this propagation delay by 0.7(Ln2)*RC (back in propagation delays)

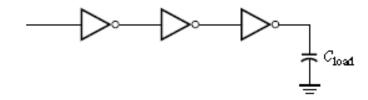


Response of an inverter to a ramp V_{in}

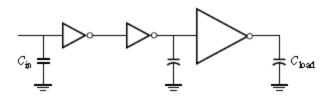
Ramp input makes the propagation delay longer(approximately by 50%) making it $\sim RC$

A ramp voltage change is a more realistic scenario when we have a full chain of inverters driving in cascade

Gate Sizing for Optimal Path delay



In order to drive a large load we can NOT use an arbitrary large gate to minimize the delay (it just shifts the problem to the previous stage)



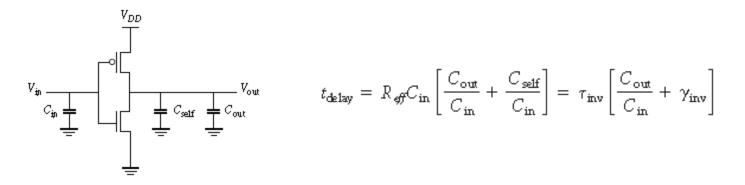
A proper question is drive a load (C_{load}) with an input capacitance of C_{in} (and of course optimizing the delay)

Optimal Path Delay Design

There are two unknowns, the number of gates and the size of each (two degrees of freedom)

$$C_{in} = C_{g}(W_{n} + W_{g}) = C_{g}(W_{n} + 2W_{n}) = C_{g}(3W_{n})$$
$$R_{eff} = R_{eqn}\left(\frac{L_{n}}{W_{n}}\right)$$
$$\tau_{inv} = R_{eff}C_{in} = R_{eqn}\left(\frac{L_{n}}{W_{n}}\right)C_{g}(3W_{n}) = 3R_{eqn}C_{g}L_{n}$$

This is the *intrinsic delay* of a gate (specific tag) used many places



Gate Sizing for Optimal Path delay

total_delay =
$$\sum_{j=1}^{N} \tau_{inv} \left(\frac{C_{j+1}}{C_j} + \gamma_{inv} \right)$$

$$c_{in} = \cdots \qquad c_{in} = c_{in}$$

$$total_delay = \sum_{j} \tau_{inv} \left(\frac{C_g W_{j+1}}{C_g W_j} + \gamma_{inv} \right) = \sum_{j} \tau_{inv} \left(\frac{W_{j+1}}{W_j} + \gamma_{inv} \right)$$

Let's consider two consecutive ones

Minimize the delay (find a W that makes $dD_j/dW = 0$)

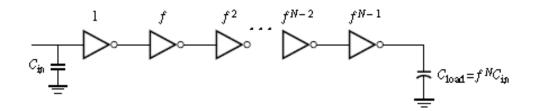
$$D_{j} = \tau_{inv} \left(\frac{W_{j}}{W_{j-1}} + \gamma_{inv} \right) + \tau_{inv} \left(\frac{W_{j+1}}{W_{j}} + \gamma_{inv} \right)$$
$$\frac{\partial D_{j}}{\partial W_{j}} = \tau_{inv} \frac{1}{W_{j-1}} - \tau_{inv} \frac{W_{j+1}}{W_{j}^{2}} = 0$$

$$\therefore \frac{W_j}{W_{j-1}} = \frac{W_{j+1}}{W_j}$$

$$\therefore W_j = \sqrt{W_{j+1}W_{j-1}}$$

If the size of each gate is the geometric mean of the two gates (previous and after) the delay Is minimum!

Gate Sizing for Optimal Path delay



Therefore, we can consider the size of gates a geometric sequence with factor *f*

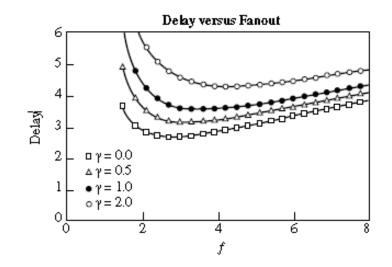
$$f^{N}C_{in} = C_{ioad}$$

$$\therefore N = \frac{\ln(C_{ioad}/C_{in})}{\ln f}$$

$$total_{delay} = N \times \tau_{inv} \left(\frac{C_{j}}{C_{j-1}} + \gamma_{inv}\right)$$

$$total_{delay} = \frac{\ln(C_{ioad}/C_{in})}{\ln f} \times \tau_{inv}(f + \gamma_{inv})$$

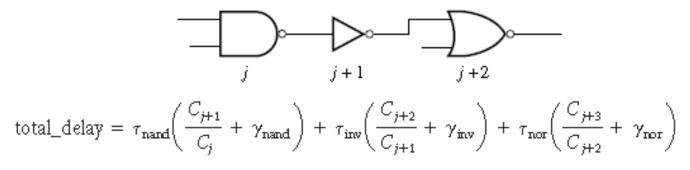
What *f* makes the total delay a minimum?



The optimum value of *f* depends on γ (for $\gamma = 0$, it is *e*).

It is similar calculation if we have chain of NAND and NORs:

$$\begin{aligned} \tau_{\text{rand}} &= R_{egn}C_{\text{in}} = R_{egn}\left(\frac{L_n}{W_n}\right) 4W_n C_g = 4R_{egn}C_g L_n \\ \tau_{\text{ror}} &= R_{egn}C_{\text{in}} = R_{egn}\left(\frac{L_n}{W_n}\right) 5W_n C_g = 5R_{egn}C_g L_n \end{aligned}$$
 total_delay = $\sum_j \tau_{\text{rand}}\left(\frac{C_{j+1}}{C_j} + \gamma_{\text{rand}}\right)$



The delay through stages j and j + 1 is given by

$$D_{j+1} = \tau_{\text{nand}} \left(\frac{C_{j+1}}{C_j} + \gamma_{\text{nand}} \right) + \tau_{\text{inv}} \left(\frac{C_{j+2}}{C_{j+1}} + \gamma_{\text{inv}} \right)$$

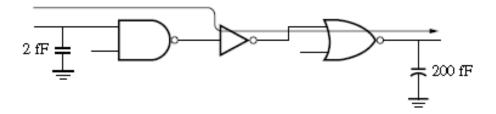
For minimum delay, we take the derivative with respect to C_{j+1} :

$$\frac{\partial D_{j+1}}{\partial C_{j+1}} = \tau_{\text{nand}} \left(\frac{1}{C_j} \right) - \tau_{\text{inv}} \left(\frac{C_{j+2}}{C_{j+1}^2} \right) = 0$$

$$\therefore \tau_{\text{nand}} \left(\frac{C_{j+1}}{C_j} \right) = \tau_{\text{inv}} \left(\frac{C_{j+2}}{C_{j+1}} \right)$$

$$\therefore \tau_{\text{nand}} FO_j = \tau_{\text{inv}} FO_{j+1}$$

Example: Find the device sizes that optimize the delay through the indicated path for the circuit below.



We must equalize the fanout portion of the delay. Therefore,

$$\sim \tau_{\text{nand}} \left(\frac{C_{j+1}}{C_{\text{in}}} \right) = \tau_{\text{inv}} \left(\frac{C_{j+2}}{C_{j+1}} \right) = \tau_{\text{nor}} \left(\frac{C_{\text{load}}}{C_{j+2}} \right)$$

We take the product of these three components and then obtain the geometric mean:

$$\begin{aligned} \mathsf{Fanout_delay} &= \sqrt[3]{\tau_{\mathsf{rand}} \left(\frac{C_{j+1}}{C_{\mathsf{in}}}\right) \times \tau_{\mathsf{inv}} \left(\frac{C_{j+2}}{C_{j+1}}\right) \times \tau_{\mathsf{nor}} \left(\frac{C_{\mathsf{load}}}{C_{j+2}}\right)} \\ &= \sqrt[3]{\tau_{\mathsf{rand}} \times \tau_{\mathsf{inv}} \times \tau_{\mathsf{nor}} \left(\frac{C_{\mathsf{load}}}{C_{\mathsf{in}}}\right)} = \sqrt[3]{4 \times 3 \times 5 \left(\frac{200}{2}\right) \times R_{\mathsf{eqn}} C_g L_p} \\ &= 18.2 R_{\mathsf{eqn}} C_g L_p \end{aligned}$$

Therefore, the input capacitance for each gate can be computed by setting the fanout delay to the above result:

$$\begin{aligned} \operatorname{fr}_{\operatorname{ror}}\left(\frac{C_{\operatorname{load}}}{C_{j+2}}\right) &= 5R_{\operatorname{eqn}}C_{g}L_{n}\left(\frac{200\ \operatorname{fF}}{C_{j+2}}\right) = 18.2\,R_{\operatorname{eqn}}C_{g}L_{n} \\ \therefore C_{j+2} &= 55\ \operatorname{fF} \\ \tau_{\operatorname{inv}} &= \left(\frac{C_{j+2}}{C_{j+1}}\right) = 3R_{\operatorname{eqn}}C_{g}L_{n}\left(\frac{55\ \operatorname{fF}}{C_{j+1}}\right) = 18.2\,R_{\operatorname{eqn}}C_{g}L_{n} \\ \therefore C_{j+1} &= 9.1\ \operatorname{fF} \\ \tau_{\operatorname{rand}}\left(\frac{C_{j+1}}{C_{\operatorname{in}}}\right) = 4\,R_{\operatorname{eqn}}C_{g}L_{n}\left(\frac{9.1\ \operatorname{fF}}{C_{\operatorname{in}}}\right) = 18.2\,R_{\operatorname{eqn}}C_{g}L_{n} \\ \therefore C_{\operatorname{in}} = 2\ \operatorname{fF} \end{aligned}$$