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EECE488: Analog CMOS Integrated Circuit Design

Set 7

Opamp Design
References:  “Analog Integrated Circuit Design”  by D. Johns and K. Martin

and “Design of Analog CMOS Integrated Circuits” by B . Razavi

All figures in this set of slides are taken from the above books
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General Considerations

• Gain

• Small-signal bandwidth

• Large-signal performance

• Output swing

• Input common-mode range

• Linearity

• Noise/offset

• Supply rejection
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One-Stage Op Amps
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One-Stage Op Amp in Unity Gain 
Configuration
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Cascode Op Amps
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Unity Gain One Stage Cascode
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Folded Cascode Op Amps
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Folded Cascode Stages
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Folded Cascode (cont.)
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Folded Cascode (cont.)

| Av |≈ gm1{[( gm3 + gmb3)ro3(ro1 ||ro5)] ||[( gm7 + gmb 7)ro7ro9 ]}
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Telescopic versus Folded Cascode
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Example Folded-Cascode Op Amp
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Single-Ended Output Cascode Op Amps
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Triple Cascode

Av app. (gmro)3/2

Limited Output Swing

Complex biasing
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Output Impedance Enhancement

1221 oomout rrgAR =
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Gain Boosting in Cascode Stage
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Differential Gain Boosting
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Differential Gain Boosting
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Differential Gain Boosting
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Two-Stage Op Amps
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Single-Ended Output Two-Stage Op Amp

22SM
EECE488 Set 7 - Opamp Design   

Two-Stage CMOS Opamp

• Popular opamp design approach

• A good example to review many important design concepts

• Output buffer is typically used to drive resistive loads

• For capacitive loads (typical case in CMOS) buffer is not
required.

A1 –A2 1

Differential
input stage

Second
gain stage

Output
buffer

Vout
Vin

Cc
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Two-Stage CMOS Opamp Example
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Gain of the Opamp

• First Stage

Differential to single-ended

• Second Stage

Common-source stage

• Output buffer is not required when driving capacitive loads
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Gain of the Opamp

Third Stage

• Source follower

• Typical gain: between 0.7 to1

• Note: go=1/ro and GL=1/RL

• gmb is body-effect conductance (is zero if source can be tied to
substrate)
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Frequency Response
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Frequency Response

Simplifying assumptions:

• CC dominates

• Ignore Q16 for the time being (it is used for lead compensation)

Miller effect results in

• At midband frequencies
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Frequency Response

• Overall gain (assuming A3 ≈1)

which results in a unity-gain frequency of

• Note: ωta is directly proportional to gm1 and inversely
proportional to CC.
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Frequency Response

• First-order model
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Slew Rate

• Maximum rate of output change when input signal is large.

• All the bias current of Q5 goes either into Q1 or Q2.
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Slew Rate
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Slew Rate

• Normally, the designer has not much control over ωta

• Slew-rate can be increased by increasing Veff1

• This is one of the reasons for using p-channel input stage:
higher slew-rate
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Systematic Offset Voltage

• To ensure inherent (systematic) offset voltage does not exist,
nominal current through Q7 should equal to that of Q6 when the
differential input is zero.
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Systematic Offset Voltage

• Avoid systematic offset by choosing:

• Found by noting

and

then setting
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N-Channel versus P-Channel Input Stage

• Complimentary opamp can be designed with an n-channel input
differential pair and p-channel second-stage

• Overall gain would be roughly the same in both designs
P-channel Advantages
• Higher slew-rate: for fixed bias current, Veff is larger (assuming

similar widths used for maximum gain)
• Higher frequency of operation: higher transconductance of

second stage which results in higher unity-gain frequency
• Lower 1/f noise: holes less likely to be trapped; p-channel

transistors have lower 1/f noise
• N-channel source follower is preferable (less voltage drop and

higher gm)
N-channel Advantage
• Lower thermal noise — thermal noise is lowered by high

transconductance of first stage
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Feedback and Opamp Compensation
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Stable and Unstable Systems
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Time-domain response of a feedback system
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One-pole system

Bode plot of the Loop gain 
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Multi-pole system

Bode plot of the Loop gain 

12 101.0 pp ωω >
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Phase Margin
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Phase Margin

Closed loop frequency response
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Phase Margin (Cont.)

Phase Margin = 45°

)(HPM GXωβ∠+=180
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Phase Margin (Cont.)

Phase Margin = 45°
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Phase Margin (Cont.)

• At PM = 60o results in a small overshoot in the step response.
• If we increase PM, the system will be more stable but the time

response slows down.
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Frequency Compensation

• Push phase crossing point out

• Push gain crossing point in
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Telescopic Opamp (single-ended) -example
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Compensation (Cont.)

• Assume we need a phase margin of 45 o (usually 
inadequate) and other non-dominant poles are at hig h 
frequency.
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Compensation of a two-stage opamp

Miller  Effect     Ceq = CE + (1+ Av2)CC

f pE = 1

2πRout [CE + (1+ Av 2)CC ]
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Compensating Two-Stage Opamps
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Compensating Two-Stage Opamps

• Q16 has VDS16 = 0 therefore it is hard in the triode region.

• Small signal analysis: without RC, a right-half plane zero occurs
and worsens the phase-margin.

gm1v
in

gm7v
1

v1

R1 C1

RC CC

R2 C2
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Compensating Two-Stage Opamps

• Using RC (through Q16) places zero at

• Zero moved to left-half plane to aid compensation

• Good practical choice is

• satisfied by letting
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Design Procedure

Design example: Find CC with RC=0 for a 55o phase margin

– Arbitrarily choose C’C=1pF and set RC=0

– Using SPICE, find frequency ωt where a –125° phase shift
exists, define gain as A’

– Choose new CC so ωt becomes unity-gain frequency of the
loop gain, resulting in a 55o phase margin.

Achieved by setting CC=CCA’

– Might need to iterate on CC a couple of times using SPICE
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Design Procedure

Next: Choose RC according to

– Increasing ωt by about 20 percent, leaves zero near final ωt

– Check that gain continues to decrease at frequencies above the
new ωt

Next: If phase margin is not adequate, increase CC while leaving
RC constant.
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Design Procedure

Next: Replace RC by a transistor

SPICE can be used for iteration to fine-tune the device
dimensions and optimize the phase margin.
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Process and Temperature Independence

• Can show non-dominant pole is roughly given by

• Recall zero given by

• If RC tracks inverse of gm7 then zero will track ωp2:
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Process and Temperature Independence

• Need to ensure Veff16/Veff7 is independent of process and
temperature variations

• First set Veff13=Veff7 which makes Va=Vb
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Process and Temperature Independence
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Stable Transconductance Biasing
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Stable Transconductance Biasing

• Transconductance of Q13 (to the first order) is determined by
geometric ratios only.

• Independent of power-supply voltages, process parameters,
temperature, etc.

• For special case (W/L)15=4(W/L)13

gm13=1/RB

• Note that high-temperature will decrease mobility and hence
increase effective gate-source voltages.

• Roughly 25% increase for 100 degree increase

• Requires a start-up circuit (might have all 0 currents)


