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UBC
Review

= Course logistics:
= See the class webpage for syllabus details

= Midterms, February 15 and March 28 2008
(possibly take-home)
= Final project, April 18 2008
= Grad students -- presentation required
= Undergrad students -- presentation for bonus points
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Review

= Introduction
= Hybrid systems are pervasive

= Specialized techniques are required for analysis and synthesis of
hybrid systems

= Hybrid systems contain both
= Switching and stability

= Hybrid systems with modes with stable dynamics are not always
stable

= Hybrid systems with modes with unstable dynamics are not
always unstable

= Applications
= Longitudinal and lateral dynamics of aircraft
= Biological networks, ecological systems
= Automotive systems (within a car, as well as a hierarchical)
= Robotics; mechanical systems with discontinuities

and discrete elements
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Brief History

= Hybrid systems has been studied rigorously over
the past ~15-20 years

= Earlier work in continuous systems with non-
smoothness
= Sliding mode control (Utkin, 1992)
= Anti-windup filters
= Filippov (1988), and others...

= Discrete event systems
= Finite automata theory (1950s)
= Model checking
= Timed automata

= “Hybrid” work pushed by need for verification of
systems for which timing is critical (and not
?tured b%sfinite automata)
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Today'’s lecture

= Continuous systems
= Differential or difference equations
= Existence, uniqueness
= Common forms
= Discrete event systems
= Finite state machines, automata
= EXxistence, uniqueness
= Commonalities in continuous and discrete
systems
= Open-loop vs. closed-loop
= Modeling variations
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Continuous systems

= Differential equations with output

X = f(x,u)
y =h(x)
= State x(1)
= Input u(t)
= Output y(t)
= Ingeneral, x, u, y are vectors

Mass M = Transform nth order differential
o equations into sets of coupled 1st
order differential equations

\ o] 0
=— i x=|.], x=
MLO =-Mgsin0 ‘ 6 _Zging
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Length L

Continuous systems

= Differential equations with output

x=f(x,u)
y = h(x)
= State x(1)
= Input u(t)
= Output y(t)
= Solution (or trajectory) of this
ODE is x(t)
= Solution requires knowledge of
the initial condition x(0) = X,

. o] 0
= — 1 xXxX=]1. A X =
MLO =-Mgsinf ‘ 6 _Zging
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UBC
=  What can go wrong with solving ODEs?
= No solutions
= Exercise: Show that dx/dt = -sign(x), x(0) = 0 does NOT have a
solution for t >= 0.
= Multiple solutions
= Exercise: Show that for dx/dt = x1/3, x(0) = 0, both functions
x()=21"
x(#)=0
are solutions to the differential equation.
= Theorem (Existence and uniqueness of solutions):
If f(x) is Lipschitz continuous, then the differential equation
dx/dt = f(x), x(0) = x, has a unique solution x(t) for t >0.
= This ensures smoothness by bounding the slope of
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Continuous systems

Lipschitz continuity

= f(x)is Lipschitz continuous if there exists a constant K> 0
such that for all x, y

[ ) - fy) || <Kl x-y[]
(where || . || indicates the vector norm)
= Kis the Lipschitz constant
= Note that
= If fis Lipschitz continuous, it is also continuous.

= A Lipschitz continuous function is not necessarily differentiable.
= All differentiable functions with bounded derivatives are Lipschitz
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Continuous systems

Vector norms
= Common types of vector norms

= 1-norm [1x 11 = 1%+ %] + .+ %]
= Euclidean norm (2-norm) [1x 1], = (x™x)1/2
= oconorm [ X [l = max; |x|

= These norms are all equivalent in that there exists constants c,, ¢, such
that

all xlla= 11 x1ls = 6l Xl

= Useful norm properties
= |[|[x||=Z0forx#0

= x4yl <(IxII+]1lyll
= |lax]]l=]a]llx]| forscalar a
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Continuous systems

= Classified according to the form of f(x,u)

= Autonomous dx/dt = f(x)
= Linear dx/dt = Ax(t)
= Affine dx/dt = Ax(t) + b
= Non-autonomous dx/dt = f(x,u)
= Linear dx/dt = Ax(t) + Bu(t)
= Affine dx/dt = Ax(t) + Bu(t) + b

= Nonlinear affine dx/dt = f(x) + g(x)u
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Continuous systems

Example: Spring-mass-damper system 2

= nth-order differential equation Wall =
@ L w® e oSt

dt? dt b S

= State-space differential equations L
50 = 5(0) P
_ k b . 1
xz(f)——MY(l)—MY(Z)"'ﬁ”(t) 1‘\/‘ le

with state x = [y dy/dt]’

= This is a linear non-autonomous system
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Continuous Systems

= Linear systems

« A function f(x) is linear if it fulfills the
following two properties:

1. Superposition: f(x+y)= f(x)+ f(y)
2. Scaling : flax)=a f(x)

= Exercise: Show that these two conditions
hold for autonomous and non-autonomous
linear dynamical systems.
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Continuous Systems

= Linear systems
= Closed-form solution for x = Ax, x(0) = x,
x(1) = D(1)x(0), (1) =
2 k

t
D)= =1+ At+A2%+...+HAk +o

x(15)
e Gty —————

x(t) x(t))

|
b=t b(t-1y)
I
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Continuous Systems

= Linear systems
= Closed-form solution for
%(t) = Ax(1) + Bu(t), x(0)=x,
is !
x(t) =P(t)x(0) + de(t - 7)Bu(t)dt
0
% J - ~ _J
Natural Forced
response response

= For general dynamical systems, it is very
difficult to find closed-form solutions.
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Continuous systems

= Another example of a continuous dynamical system

(1)

r(i)
Current T) R

+
L C A~ v(h)
source -

= Kirchoff’s current law yields an integro-differential
equation
dv(t) 1 1
C =+ v+ 7 [vry=r@)

0
that can be placed into standard linear state-space
form
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LBC
Discrete systems

= Finite state machine

%
R
G=0Q.2R)
= Set of discrete states (or
p modes) Q

4 = Set of events (or

e transitions) =

S s

G Transition relation R
3 o 05 o
n, = Initial set of states Q,
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LBC
Discrete systems

= Finite state machine

%
R
G=0Q.2R)
= Set of discrete states (or
p modes) Q

4 = Set of events (or

e transitions) =

S s

G Transition relation R
3 o 05 o
n, = Initial set of states Q,

.\ . b ) .
G = Solutions are executions of
n-1 An_s the automata
= This is a string of modes and

a string of events that
trigger those modes.

q(k+1) = R(q(k),o(k))
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Discrete Systems

Hand-held phone

= Modes
\ Q = {off, dial tone ,connect }
= Events
dial /

3 = {TALK, Dial, Hangs up}
tone

= Transition function
As shown graphically
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Discrete Systems

= Uniqueness of an execution depends on R.

= G is deterministic if and only if |R(q,s)| < 1 for all possible
combinations of g in Q and s in S.

= In this case, R is called a transition function
= Otherwise G is non-deterministic

= Set notation
= Element of a set
= Product of multiple sets
= Power set
= Language of an automaton
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Continuous & discrete systems

= Model variations
= Control disturbances as well as control inputs

= Stochastic processes (as continuous inputs or discrete
events)

= Difference equations instead of differential equations in the
continuous dynamics

= Additional parameters will be defined to suit
particular problem issues.
= Marked vs unmarked modes in discrete event systems

= Domains (invariants) and bounded sets in continuous states
and inputs

= Others...
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Continuous & discrete systems

= Role of control

= Continuous control enters through v and usually represents
physical forces acting on a system

= Discrete control enters through enabling/disabling of specific
events and can represent mode-logic or other structure
superimposed on the system

= With state-based feedback, a non-autonomous system
becomes autonomous (control no longer explicitly appears)
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Continuous & discrete systems

PROCESS
. e - ————————
Desired I 1 Outout
Output A ; utpu
1 » ctuating Process
Response I Device I
1 1
U g U - 1

Figure 1.2 Open-loop Control System (without feedback)

An open-loop control system uses an actuating device to
control the process directly.
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Continuous & discrete systems

Desired
Output
Response Output
Scaling Comparison Controller Process
L.....El?.q_(_.__._” (eg. Speed)
(eg. Voltage)

Measurement

(eg. Voltage)

Figure 1.3 Closed-loop Control System (with feedback)
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V%) Automobile Cruise Control

Slope of road
= Open loop ; l
Desired Velocity Throttle Velocity
——{ Controller » Car |—=

= Closed loop

Slope of road
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Summary

= Continuous and discrete systems defined by states,
inputs, functions/relations, and initial conditions

= Solutions or executions depend on the dynamics as
well as the initial condition.

= Special care must be taken for continuous systems to
ensure both existence and uniqueness

Desired Velocn\/l
f Error J— Throttle == Velocity: = Note: If you are not already, become familiar with set
ontrofer g " notation and norm functions, etc. presented here --
these will be used throughout the course
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37)  Hybrid Systems
/’Q}\A
¥, (xu,)=0
62
A
A
O":l & « /v/oin 3
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