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= (Nonlinear) continuous system stability
= Indirect method
= If the linearized system has Re(2;)<0 (for all /), the nonlinear system is
locally asymptotically stable about the equilibrium point
= If the linearized system has Re(A;)>0 (for at least one /), the nonlinear
system is locally asymptotically unstable about the equilibrium point
= If the linearized system has Re(};)=0 (for at least one /), no claims may
be made about the stability of the nonlinear system
= Direct method
= If you can find a Lyapunov function, then the system is stable.

= If you cannot find a Lyapunov function, you cannot claim anything
about the stability of the system about the equilibrium point.

= Lyapunov functions are “energy-like functions”
= Lypaunov functions are a sufficient condition for stability
= Special case: Lyapunov theory for linear systems
= Necessary and sufficient conditions
= Quadratic Lyapunov functions
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Review: Lyapunov equation

= For the dynamical system
= Az, z(0) ==z

= consider the quadratic Lyapunov function
V(z) =2TPz, P=PT

whose time-derivative
V(z) = aTPi+2TPx
= 2TPAz+ (Az)T Pz
= 2T(PA+ ATP)x
can be written as
V=-2"Qz, Q2 —(PA+A"P)=Q"
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Review: Lyapunov stability

Theorem: Lyapunov stability for linear systems

= The equilibrium point x*=0 of dx/dt = Ax is asymptotically
stable if and only if for all matrices Q = QT > 0 there exists
a matrix P = PT > 0 such that

PA+ATP+Q=0

For a given Q, P will be unique __
= The solution P is given by P = / eA 1 QeAtdt

0

= To numerically solve for P, formulate the linear matrix inequality
ATP+PA<O
P>0

= And invoke the Matlab LMI toolbox
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W/ Today’s lecture

= Review
= Continuous system stability
= Linear quadratic lyapunov theory
= LMIs

= Introduction to hybrid stability
= Hybrid equilibrium
= Hybrid stability

= Multiple Lyapunov functions
= Hybrid systems
= Switched systems
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Hybrid equilibrium

= Definition:
The continuous state =" € R" is an equilibrium
point of the autonomous hybrid automaton
H=(Q, X, f, R, Dom, Init) if
" f(¢,0)=0forallge Q
" R(q,0) CQ x0

= Assume without loss of generality that x* = 0

= Jumps out of (q,0) are allowed as long as in the
new mode, the continuous state is x = 0
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Hybrid stability

= Definition:

The equilibrium point x* = 0 of the autonomous
hybrid automaton H = (Q, X, f, R, Dom, Init) is
stable if for all ¢ > 0 there exists a & > 0 such that
for all executions (t, g, x) starting from the

state (g, X),
|zol| < 6= ||z(®)|| <€ teT

= As before, the continuous state must merely stay
within some arbitrary bound of the equilibrium
point -- convergence is not required
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Hybrid stability

= Definition:

The equilibrium point x* = 0 of the autonomous
hybrid automaton H = (Q, X, f, R, Dom, Init) is
asymptotically stable if it is stable and 6 can be
chosen such that for all executions (z, q, x) starting
from the state (qy, Xo),

Izl < 6= Jim [|z(t)]| =0

= Note that (t, g, x) is assumed to be an infinite
execution, with 7 = > _(r/ = 7)
= Recall that for non-Zeno executions, t,, = o
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Hybrid stability

Controller 1 o Controller 2
dx/dt = Ax| ™| dx/dt = AxX ‘ UNSTABLE
STABLE STABLE
Controller 1|7 %[ Controller 2
dx/dt = Ax| ™| dx/dt = Ax ‘ STABLE
STABLE STABLE
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Hybrid stability

Controller 1
dx/dt = A;x

Controller 2
dx/dt = A,x

UNSTABLE

UNSTABLE

Controller 1
dx/dt = A;x

Q)

Controller 2
dx/dt = Ax

UNSTABLE

UNSTABLE
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Hybrid stability: Example 1

Q={511’CI2}

-1 10 -1 100
J={Ax A, Al:[-loo -1}’ AZ:[—]O -1}
Init = Qx {X \0}

Dom ={q,,x,x, <0}U{q,,x,x, =0}
R(qla{.x |X1X2 = 0}) = (qz,X), R(qz,{x |X1X2 < 0}) = (ql,x)

Controller 1 w/ Controller 2
dy/dt = Ax d/at = Ax - UNSTABLE
STABLE STABLE
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Hybrld stability: Example 1
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Controller 1 Controller 2
a/at = Ax || ot = Ax
STABLE STABLE
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Hybrid stability: Example 1

X" =xy<=D) (- x+10y) + (xy>0) (- x+100y)
0x-Y) + (X yo0) (-

¥ =(xy<=Dj (- 10 )(-10x-Y)
T T

S|

M TSt

‘—>—>:-)~—)‘T’\)~=ﬂﬂ\\>s\)

i e e

Se e ew 2
D s S S SPLAPIP)
D R e e e
O e s

Controller 1 w/ Controller 2
dy/dt = Ax d/dt = Ax - UNSTABLE
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Multiple Lyapunov functions

Consider a Lyapunov-like function V(q,x):

When the system is evolving in mode g, V(q,x) must decrease
or maintain the same value

Every time mode q is re-visited, the value V(q,x) must be lower
than it was last time the system entered mode q.

When the system switches into a new mode @', V may jump in
value

For inactive modes p, V(p,x) may increase
Requires solving for V directly vy
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Hybrid Lyapunov stability

Theorem: Lyapunov stability for hybrid systems

= Consider a hybrid automaton H with equilibrium point x*=0.
Assume that there exists an open set D C Q x R™ such that
(¢,0) € D forsome g€ Q. LetV: D — R be a
continuously differentiable function in x such that for allg € Q:

1. V(q.0)=0:
2. V(g ) >0 for all z. (¢.z) € D\{0}, and
3. 2492 f(q,2) < 0 for all z, (¢,2) € D
= If for all (r,q,x) starting from (qo, o) € Initn D, and all ¢’ € Q

the sequence {V(¢(:),z(:)) : () = ¢’} is non-increasing (or
empty), then x*=0 is a stable equilibrium point of H.
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Multiple Lyapunov functions

V(x)

Lyapunov-like function in each mode must
= Decrease when that mode is active

= Enter that mode with a value lower than the last time the mode
was entered

Valid for any continuous dynamics (including nonlinear) and any
reset map (including ones with discontinuities in the state)

Requires construction of sequence of ‘initial’ values of V(q,x)
each time a mode is re-visited

(Defeats goal of bypassing directw(ilrl)tegration or solution x(t) )
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Hybrid stability: Example 1

= Candidate Lyapunov function

, P ifqg=q
! (('[“I) - { .I'TPQ.I' if q = q2

= Check whether the function meets the requirements for stability
= Lyapunov function in each mode

—=V(g.2(1))

= iTPa+aTPa

= .rTAfP,-.r + 2T P A
2T (ATP + P A
= —a2TIz

~lel* <0

Y (q.2)f(q.x) =

= Sequence for each mode
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Hybrid stability

: Example 1

= With Q=Q,=I v, v,
400,.- Y 400 e s
= Lyapunov 200’ 200’
functions in

each mode

%@ -10

10 10

0 “o
(2 -10 10 x(1)

"o
10 x1)

v, v,

= Level sets are 10
ellipses B
% 0
5
-10

0 0 10

X

EECE 571M / 491M Spring 2008

x(2)

(1) x(1)

18

Hybrid stability: Example 1

= These Lyapunov-like functions
are not acceptable candidates
to show hybrid stability o

Time history with switching

i 2 x1
= V(q,x) decreases while \ o] —x ]|
mode q is active [ .. X,
- . 2 1
= ButVis higher when € . M
mode is re-visited .
x10° Phase plane plot o ) X X N
o 0 0.1 0.2 0.3 0.4 0.5
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Hybrid stability

: Example 2

X"=(xy>0) (- x+10Y) + (xy<=0) (- x + 100y)
V"= (cp0) (- 100x-y) + (xy<=0) (- 10x- )

A
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Controller 1 % Controller 2

ax/dt = A | | aw/at = Ax - STABLE
STABLE STABLE
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Hybrid stability: Example 2

= With Q,=Q,=I v, v,
= Lyapunov
functions in
each mode .
1]
x(@ -10 10 (1) (2 -10 10 (1)
V1(x) \Iz(x)
= Level sets are 10
ellipses &
g 0
1
-10
-10 1] 10
x(1) x(1)
EECE 571M / 491M Spring 2008 21

Hybrid stability: Example 2

= These Lyapunov-like functions
are acceptable candidates to
show hybrid stability

Time history with switching

= V(q,x) decreases while "® —
mode q is active 10 A
= Vis lower when modeg s|
is re-visited ol -
R
Phase plane plot N fiin
s . . . .
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Multiple Lyapunov functions

= Often difficult to use in practice!

= To yield more practical theorems, focus on specific classes of
= switching schemes (arbitrary, state-based, timed)
= dwell times within each mode
= continuous dynamics (linear, affine)

= Lyapunov functions (common Lyapunov functions, piecewise
quadratic Lyapunov functions, etc.)

Vig,x)

- N .

Summary
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= Hybrid equilibrium
= Allows switching
= Continuous state must be 0
= Hybrid stability
= Switching allowed so long as the continuous state remains
bounded
= Multiple Lyapunov functions
= Most general form of stability
= Difficult to use in practice
= Narrow according to structure within the hybrid system
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