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= Chattering and Sliding modes
= Common Lyapunov functions for specific classes of
switched linear systems
= Commuting system matrices
= Upper-triangular system matrices
= Two-dimensional system matrices

= Control design for stability
= Introduction
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Sliding Modes

= Implicit assumption that
piecewise-linear dynamics \
do not chatter

= However, attractive ‘sliding )
modes’ are possible —

= Proving stability of a sliding
mode is more difficult, but /
still possible ™~

= Can also be formulated as /

LMI constraint s‘ /

= Detection of sliding modes /
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Sliding Modes

= Requires extension of

solution in the sense of Example #3:
Filippov

= (Solution lies within &= | —§ |« | s~ | P 7
convex hull of L /]
dynamics) /|

= Define a ‘sliding surface’ \. [
of width ¢ --> 0 \ J/

= Show decreasing /
Lyapunov function along

sliding surface X, =0
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Sliding Modes

= Trajectories appear to
‘stop’ in pplane

PPLANE Phase Plane

X" = (=2*X+2*Y)*(x<=0)+(-2*x~-2*y)*(x>0)
Y = (-4*x+1%y)*(x<=0)+(4*x+1*y)*(x>0)
; i 4T
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Sliding Modes

= Midterm Problem #3
cennme] L ] a2 0]

Dom = (g1, {z | (z1 + z2)(z1 — 22) > 0} U (a2, {z | (&1 + 22) (31 — 22) < O}),

R(q1, {z | (z1 + z2)(z1 — 72) < 0} () BT —
R(gz, {z | (z1 + m2)(21 — 22) 20} = (qu,7) .

= Hybrid system is stable
= No chattering occurs
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Sliding Modes

= REVISED Midterm Problem #3

. -1 0 -2 0
'JJ=A1,’L'-.141={ 0 72]=A2=[ 0 71},

Dom = (g1, {z | (z1 + z2)(z1 — z2) @0} U (a2, {z | (@1 + 22)(21 - Iz@ 0}),
R(q, {z | (21 + 22)(@1 — m)@m = (@2)

R(g2, {z | (21 + 22) (21 — 22)[g/0} = (q1,2) ‘[
= Note change in domain and transition .
function .

= Hybrid system is stable, assuming ’
sol'n in the sense of Filipov -

= Chattering DOES occur

= Trajectories get ‘stuck’ at x,=x, and —
Xy=X,
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Common Lyapunov Functions

= So far
= Quadratic Common Lyapunov function for switched linear systems

= Goal: Identify specific classes of systems for which common
Lyapunov functions exist

= Arbitrarily switched linear systems with:
= Commuting system matrices
= Upper-triangular system matrices
= Two-dimensional system matrices
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Commuting system matrices Commuting system matrices

= Consider a two-mode system for which eAred? = Atz =| Theorem:
A1 Ay = As A4 eA1TAzp — gAzpAaT If a switched linear system
t=Ax, 1€
= Label time intervals in mode 1, mode 2 by p, T, respectively. has system rpatr-ices 4/’ that commute and are Hurwitz,
then the arbitrarily switched linear system is stable.

= The state trajectory after 2n mode transitions at some time tis: . A quadratic Common Lyapunov Function is

— AoTn pA1Pn . . . pA2T2 pA1p2 pA2T1 pA1P1 .
x(t) eA e e rerre T e z(0) V(z) = z¥ Ppx, where m = |Z|, and
= e2Tn... eA27'1 . eAlpn e eAlpl . x(O) T
= A2t F711) | gAr(pnt+p1) . z(0) - = A%,Pl +PA
—Pi1 = Aj P+ PA;
= Andas t — o0, Zn—»oooeriHoc :
i i T
—Lm-1 = A Pm + PmAm
= Therefore z(t) — 0 as t — oo m
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Commuting system matrices Upper-tri. system matrices

= Example: =| Theorem:
If a switched linear system
-1 0 -2 0 J !
'i:=A7,LL'..ﬁ_1={ é 72] A2={ 0 71}, = Az, i€
has system matrices A, that are upper-triangular and are
= Check:  A1Ap = AgAy Hurwitz, then the arbitrarily switched linear system is
-1 0 —2 0 2 0 exponentially stable.
0 -2 0 -1 |0 2
92 0 1 0 2 0 = (Proof: . .
0 -1 0o 2|1~ 10 2 Solvable Lie Algebras all have transformations to upper-

triangular form.

Switched systems with solvable Lie Algebras and Hurwitz system
matrices are exponentially stable.)

= And eig(A,) = {-1,-2}, eig(A,) = {-2,-1} (both are Hurwitz)
= Diagonal matrices commute.
= What other classes of matrices commute?
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Upper-tri. system matrices

= Example:
i:AiCL‘, A1:|:_1 2:|,A2:|:_2 3:|

= Eig(A;) ={-1, -3}
= Eig(A) ={-2, -4}
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Two-dim. two-mode system

=| Theorem:
A two-dimensional, two-mode arbitrarily switched linear system
T=A;x, 1€ {1,2}
is asymptotically stable if and only if all pair-wise convex
combinations of
A17A25A;17 Agl

are Hurwitz.

= Related Theorem:

If a switched system is asymptotically stable, then all convex
combinations of all subsystem pairs are globally asymptotically stable.

= Recall that a convex combination of two matrices, A, Bis
aA+(1—-a)B, acl0,1]
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Common similarity transf.

=| Theorem:
If for a switched linear system

T=Aix, 1€
with system matrices A, that are Hurwitz, and
there exists a common nonsingular matrix T such that the matrices

A, =T AT

are upper-triangular, then the arbitrarily switched linear system is
exponentially stable.

= A quadratic Common Lyapunov Fugction is
V(z)=2TPz, P=T"TPT™!
for which the transformed coordinates in each mode are

z=Tx
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Common similarity transf.

= Note that if A and B are diagonalizable, they share the same
eigenvector matrix T if and only if AB=BA.

= Note that a diagonal matrix A; = T-*AT is also upper-triangular.
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Introduction to Hybrid Control

= Problem 1:
= Given a switched linear system with Hurwitz matrices, what are the
classes of switching signals for which the switched system is stable?
(Systems for which a common Lyapunov function does not exist)
= Dwell times
= Slow switching

= Problem 2:
= Given a switched linear system with NO Hurwitz matrices, construct a
switching signal that stabilizes the switched system.
(Systems which contain a stable subsystem can be solved trivially)
= Existence of a stabilizing switching signal
= Estimation-based supervisors
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Introduction to Hybrid Control

= Problem 3:

= Given a non-autonomous hybrid system, how should the continuous
and discrete inputs be chosen to ensure a stable and/or optimal closed-
loop hybrid system?
= Stabilizing model predictive control (MPC)
= Optimal control of hybrid systems with terminal constraints

EECE 571M / 491M Spring 2008 18

Two-mode switched linear sys.

Switched linear systems

=| Theorem:
There exists a stabilizing switching scheme such that the linear system
z=Az, i€{1,2}
(with unstable A)) is asymptotically stable if and only if there exists o
in (0,1) such that
Aeq = oA + (1 — Oé)Az
is Hurwitz.

= The piecewise Lyapunov function which proves stability:
V(g,z) = 27 Poyz, AeTquq + PegAeqg = —Q, for some @ >0

= The switching scheme is enforced through the state-space partition

given by:
Dom = U; (qi, {z| a:T(AiTPeq + PegAi)z < O}) ,
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=| Theorem:
If for the switched linear system

t=Ax, i1€{1,2,---,m}
there exists a stable convex combination of all state matrices, e.g.

AquiaiAi, a; >0, ZCZ.,;Zl
i=1 %

then there exists a stabilizing switching scheme
o(z) = argmino” (A7 Peg + PeqAi)z
1€

with piecewise quadratic Lyapunov function
V(g,z) = 27 Poyz, AeTquq + PegAeqg = —Q, for some Q >0

= Note that for m > 2 this provides sufficient (not necessary and
sufficient) conditions.
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Summary

= Common Lyapunov Theorems for switched linear
systems
= Commuting system matrices
= Upper-triangular system matrices
= Two-dimensional system matrices
= Common similarity transformations

= Control synthesis for stability
= Introduction
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