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Verification
    A mathematical proof that the

system satisfies a property

Verification through Reachability

1. Reachable set

    States for which the property does not hold

2.   Controller synthesis

    Design of control laws to guarantee that the system
satisfies the property

    Methods give definite answers over all possible initial
conditions

Unsafe

Initial
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Unsafe

Initial
Computational tools

! Linear dynamics, piecewise affine systems

! Multi-Parametric Toolbox for constrained linear dynamics (ETH
Zurich -- Morari, Bemporad, Borelli, Grieder, others)

! PHAVer for over-approximations of piecewise affine dynamics
(Frehse)

! MATISSE for large, constrained linear systems using approximate
bisimulations (Girard, Pappas)

! Linear differential inclusions and timed automata

! d/dt for linear differential inclusions (Dang, Maler)

! HyTech for linear hybrid automata (Alur, Henzinger, Wong-Toi, Ho)

! CheckMate (Chutinan, Krogh, et al)

! KRONOS for timed automata (Hovine, Olivero, Daws, Tripakis)

! UPPALL for timed automata (Larsen, Yi, Behrmann, et al)
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Unsafe

Initial
Computational tools

! Nonlinear dynamics

! Level Set Toolbox for general nonlinear dynamics (Mitchell)

! Viability tools for nonlinear differential inclusions (Aubin, Saint-
Pierre, et al)

! SOSTools for polynomial dynamics (Prajna, Papachristodoulou,
Seiler, Parrilo)

! Discrete event systems
! Mur! (Dill et al.)

! PVS (Rushby, Shankar, et al.)

! others…

See the “Hybrid Systems Tools” wiki (G. Pappas):

http://wiki.grasp.upenn.edu/~graspdoc/wiki/hst
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Unsafe

Initial
Computational tools

When selecting tools for a particular problem, consider:

! Type of dynamics (continuous, discrete, hybrid)

! Form of continuous dynamics (rectangular, linear, affine,
polynomial, nonlinear)

! Type of sets (rectangular, linear, affine, polynomial, nonlinear)

! Type of inputs (if any; controlled vs. disturbance)

! Model-checking vs. synthesis

! Computational complexity

! Computation through abstraction vs. direct computation

! Accuracy (over-approximation, convergent-approximation)

! Other factors…
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Unsafe

Initial
Computational tools

This lecture focuses on theory and tools for

! General, nonlinear dynamics

! General, nonlinear sets

! Bounded continuous controlled and disturbance inputs

! Controller synthesis / reachable set synthesis

! Continuous or hybrid dynamics

! Level Set Toolbox which provides a convergent-approximation through
direct computation

General method from

! Tomlin, Lygeros, Sastry (TAC 2000)

! Mitchell, Bayen, Tomlin (TAC 2004)

Many other methods and tools are available

! UBC’s verification group (CS)
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! 

˙ x = f (x, u), u "U
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Reachable 
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! 

J
0
(x) = 0

! 

J(x) = 0

Continuous reachability

! Goal: Find those states for
which there exists a control
law that will keep the state
away from the target

! With a controlled input and no
disturbance input, this is an
optimal control problem

! Solve Hamilton-Jacobi-Isaacs
equation to find backwards
reachable set

! Implicitly define target
through sub-level sets of J(x)
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! Modified time-dependent terminal
value Hamilton-Jacobi equation

! Chooses control input closest to
tangent of boundary of zero-level set

! 
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Example: Double integrator
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Example: Double integrator
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! Extension to systems with both controlled and
disturbance inputs

! This is a differential game.

Continuous reachability

! 

J(x,0) = J0(x)

H(x, p) =max
u"U

min
d "D

p
T
f (x,u,d)

#
$J(x, t)

$t
=min 0,H x,

$J(x,t)

$x

% 

& 
' 

( 

) 
* 

+ 
, 
- 

. 
/ 
0 

W (t) = {x " X : J(x,t) 1 0}

u
*
(x) = u"U : $J (x )

$x( )
T

f (x,u,d) 1 0{ }

! 

for x " #W ,  and any d " D
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! The solution to the HJI is the “viscosity solution”

! This is equivalent to the solution to the minimal-time-
to-reach problem:
! Find the bounded disturbance input d in D which drives the

state of the system to the target in minimal time

! (See Mitchell, Bayen, Tomlin TAC 2004)

! Viability tools have been developed to compute this
solution (Aubin, St. Pierre, Cruck, and others)

Continuous reachability
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! Evader-pursuer in relative coordinates

! Identical vehicles

! 5nmi separation

constraint

! Bounded turn rate

Example: Collision avoidance
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! Define the initial “target” set

! Evolve this set backwards in time according to the relative
coordinate-frame dynamics to find the backwards reachable set

! This is the set of states for which NO control input exists (the
evader’s turn rate) that will keep a distance of at least d0

between the two aircraft for " seconds.

! The complement is the ‘maximal controlled invariant set’

Example: Collision avoidance
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Example: Collision avoidance

! The initial set is a cylinder in relative coordinates

! The backwards reachable set has the

largest cross-section in (x1,x2)  for x3 = #

! Animations courtesy Prof. Ian Mitchell,

www.cs.ubc.ca/~mitchell
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Discrete reachability

! Consider a DES with controlled
and disturbance inputs

! Control input goal:

! Always stay in F

! Disturbance

input goal:
! Drive state

out of F

! F is known a priori

! Fc is “target”

! What control law will

ensure that despite any
disturbance input, the

state will remain in F?
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Discrete reachability

! Discrete reachability algorithm

! Where $1 is the set of controlled inputs

and $2 is the set of disturbance inputs
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Discrete reachability

! Can be formulated as a discrete game

! Create the cost function at iteration i

! And evolving backwards in time according to the discrete
transition function q’ = R( q, %1, %2 )
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Discrete reachability

! The solution to this game is the set of “winning
states” W*

! This is the largest set of states for which there exists
a control input which, if enforced, will keep the state
in F.
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Hybrid reachability

! Consider the hybrid system with hybrid target set

! Controlled discrete and continuous inputs

(try to keep the state away from the target)

! Disturbance discrete and continuous inputs

(try to steer the state into the target)

! Goal: Find the largest set of states for which there exists
controlled inputs that can keep the state away from the target,
despite disturbance inputs
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Hybrid reachability
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Hybrid reachability
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Hybrid reachability

EECE 571M / 491M Winter 2007 36

Hybrid reachability
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Hybrid reachability

EECE 571M / 491M Winter 2007 38

Hybrid reachability
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Hybrid reachability
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Hybrid reachability
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Hybrid reachability
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Hybrid reachability
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Hybrid reachability
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Hybrid reachability

! Controllable predecessor

Those states for which there exists a control (discrete or
continuous) that will keep the state in K for one iteration

! Uncontrollable predecessor

Those states for which no control exists that will prevent the
state from being driven to Kc in one iteration (and those states
already in Kc)
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Hybrid reachability

! Reach-Avoid operator

Given two subsets

where G is the target and E is the “escape set”, define the
operator

as those states which will

inevitably be driven to the

target G without first reaching

the escape set E.
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Hybrid reachability

! Hybrid reachability algorithm

! In the first step, remove from F those states for which the disturbance
(discrete or continuous) can force the state to leave F, while also
preventing the state from entering the set of states for which there
exists a control action to keep the system inside F.
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Hybrid reachability

! Reach is a computation on the continuous evolution of the state, done
independently in each mode

! The Reach computations for each mode can be done in parallel

! To solve the Reach computation, define G and E implicitly:

! Modify the HJ equation

so that the evolution of JG(x,t) is frozen once trajectories enter E.
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Hybrid reachability

! Find W1 in mode q1:



EECE 571M / 491M Winter 2007 49

Hybrid reachability

! Find W1 in mode q1:
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Hybrid reachability

Automatic landing/go-around example
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Hybrid reachability

Automatic landing/go-around example

Safe region for landing Safe region for go-around
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Hybrid reachability

Automatic landing/go-around example

! Intersection of ‘safe landing’ and ‘safe go-around’ sets

! The type of event which triggers a go-around will change the
shape of these sets

! A disturbance event will require a

reachability computation

on the red region under

landing dynamics

! Note that the red region

does not intersect h=0!
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Hybrid reachability

Automatic landing (flap control) example

! Flaps are ‘deflected’ or ‘undeflected’

! 0 degrees, 25 degrees, or 50 degrees

! Transitions are assumed to be controlled events

! Time-delay (10 seconds) for flaps to move to new position
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Hybrid reachability

Automatic landing (flap control) example

! State-space constraints which define the initial set W0:

! Nonlinear flight dynamics in (V, &, z) -- speed, flight path angle, and
altitude -- for a DC9-30
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Hybrid reachability

Automatic landing (flap control) example
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Hybrid reachability

Automatic landing (flap control) example

! Flight envelopes at 5m above the ground:

! Dark grey: subset of the initial escape set that is also safe in current mode

! Mid-grey: initial escape set

! Light grey: Target (Complement of W0)

! White: Reach set (States from which the system cannot remain in current
mode and cannot switch to safety)
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Summary

! Continuous reachability

! Level set methods

! Hamilton-Jacobi formulation

! Discrete reachability

! Invariant set algorithm

! Hybrid reachability

! Reach-Avoid operator

! Invariant set algorithm

! Examples


