NanoRHK

EECE 494
Sathish Gopalakrishnan

 Hardware platform for sensor networks
* The NanoRK operating system

* Developing applications with NanoRK

« Some tips and tricks

)
=
=

S
o

e
2
)
S
-
e
©
)
Y
h
o
o
c
©
2

C GNU tool chain

Classical preemptive operating system
multitasking primitives

Static priority scheduling support
Fault handling

Energy-efficient scheduling
— Based on a priori task set knowledge

User App User App User App

Real-Time Scheduler

Network
Stack

Time

Sensor Drivers
Management

Energy Reservations

Kernel

Microcontroller ZigBee Radio

Hardware

)
S
-
fd
(&)
&)
=
L
(&)
S
©
h
o
o
c
©
2

9
=
©
®
S
=
®
S
N
<
O
=

Atmel ATmegal28L microcontroller
IEEE 802.15.4 compliant RF receiver
250 kbps date rate

Program flash memory: 128K bytes
Measurement (serial) flash: 512K bytes
Configuration EEPROM: 4K bytes

* CPU utilization
— Time allowed per period
— Example: 10 ms every 250 ms

* Network utilization

— Packets in/out per period
Sensors/actuators usage
— Sensor readings per second

* [CPU, Network, Peripherals]

— Represent total energy usage
— Static offline budget enforcement

NanoRHK reservations

e ~1ms OS tick resolution

— Variable tick timer (interrupts occur as required, not
every quantum)

« wait_until_xxx () functions
— Suspend task until event or timeout occurs

— Enforces reservations
* |f reserves are disabled then low priority

tasks can starve
— And battery is wasted

NanoRK time management

 Task time violations
— OS will enforce time bounds allocated to a task

 Canary stack check

— Check if user-specified stack has an overflow

— Not 100%, but incurs low overhead and is better than doing
nothing

Unexpected restarts
— Capture restart that occurs without power down

 Resource over-use
— Manage sensors and actuators

* Low voltage detection
 Watchdog timer

7))
S
9
©
c
©
L
=
=
©
Y
A -
o
O
c
©
2

nrk cfg.h

#define NRK_REPORT ERRORS
// print error over serial

#define NRK HALT ON ERROR
// stop the kernel if an error happens

// Enable Canary Stack Check
#define NRK_STACK CHECK

// Max number of tasks in your application

// Be sure to include the idle task

// Making this the correct size will save on BSS memory which
// is both RAM and ROM

#define NRK MAX TASKS 5

#define NRK TASK IDLE STK SIZE 128
// Idle task stack size min=32

Configure NanoRHK task set

#define NRK_APP_STACKSIZE 128
#define NRK KERNEL STACKSIZE 128
#define NRK MAX RESOURCE_CNT 1

NRK_STK Stackl[NRK_APP STACKSIZE];
nrk task_type TaskOne;
void Taskl(void);

TaskOne.task = Taskl;

TaskOne.Ptos = (void *) &Stackl[NRK_APP STACKSIZE];
TaskOne.Pbos = (void *) &Stackl[O0];

TaskOne.prio = 2;

TaskOne.FirstActivation = TRUE;

TaskOne.Type = BASIC TASK;

TaskOne.SchType = PREEMPTIVE;

TaskOne.period.secs = 0;

TaskOne.period.nano_secs = 100*NANOS PER_MS;
TaskOne.cpu reserve.secs 0;

TaskOne.cpu reserve.nano_secs = 10*NANOS PER MS;
TaskOne.offset.secs = 0;
TaskOne.offset.nano secs = 0;

nrk activate task (&TaskOne);

Creating a NanoRK task

void Taskl()

{
uintl6_t cnt,buf;
int8 t fd,val;

printf("My node's address is %d\r\n",NODE ADDR);
printf("Taskl PID=%d\r\n",nrk get pid());

// Open ADC device as read
fd=nrk_open(FIREFLY SENSOR BASIC,READ);
if (fd==NRK_ERROR)
nrk kprintf(PSTR("Failed to open sensor driver\r\n"));
cnt=0;
while(1l) {
nrk led toggle(BLUE LED);
// Example of setting a sensor
val=nrk set status(fd,SENSOR SELECT,BAT);
val=nrk read(fd, &buf,2);
printf("Taskl bat=%d",buf);
val=nrk set status(fd,SENSOR SELECT,LIGHT);
val=nrk read(fd, &buf,2);
printf(" light=%d",buf); cnt++;

Sample NanoRK task

}
nrk close(£fd);

void rx task() {
uint8 t i, len;
int8 t rssi, val;
uint8 t *local rx buf;

// init bmac on channel 25
bmac_init (25); bmac_rx_ pkt_set_buffer
(rx_buf,RF_MAX PAYLOAD SIZE);

while(1) {
// Wait until an RX packet is received
val=bmac_wait until rx pkt();
// Get the RX packet
local_rx buf=bmac_rx_pkt get(&len,&rssi);

g a data packet

printf("Got RX packet len=%d RSSI=%d [",len,rssi);
for(i=0; i<len; i++) printf("%c", local rx buf[i]);
printf("]\r\n");

// Release the RX buffer so future packets can arrive
bmac_rx pkt release();

IvVin

[,
O
0
o

void tx task() {
uint8 t j, i, val, len, cnt;

printf("tx taskPID=%d\r\n",nrk get pid());

// Wait until the tx task starts up bmac

// This should be called by all tasks using bmac that
// do not call bmac init()...

while(!bmac_started()) nrk wait_until_ next_period();
cnt=0;
while(1l) {
// Build a TX packet
sprintf(tx buf, "This is a test %d",cnt);
cnt++;

// transmit the packet

val=bmac_tx_packet (tx_buf, strlen(tx_buf));

// Task gets control again after TX complete
nrk kprintf(PSTR("TX task sent data!\r\n”));
nrk wait until next period();

Sending a data packet

Tips and Tricks #1

Don’t Allocate Large Data Structures Inside Functions
— Allocating large data structures in functions puts them on the stack
— Make them global if need be (bad style for a PC, but this isn’t a PC)
— Stack is usually 128 bytes!

Take Care When Passing Large Data Types to Functions

— Pass large structures by reference using pointers so less data gets
pushed on the precious stack

Avoid Recursive Function Calls

— Recursive function calls keep pushing onto the stack each time they
recurse

Use “inline” For Speed And To Save Stack Space

— “inline” in C avoids function calls and (you guessed it) doesn’t push
onto the stack

* Be very careful with Dynamic Memory

— malloc does work, but can cause fragmentation and all sorts of other
problems. Use with EXTREME care or better yet not at all.

 Watch out for strings
— Strings declared anywhere consume DATA and hence use RAM.
— They don't show up using avr-nm
— Sometimes it is better to pass a numerical value to a function that has
a big kprintf() switch inside it
* Use nrk_kprintf() whenever possible for constant strings
— nrk_kprintf() stores strings in FLASH memory using the PSTR() macro

— Only use regular printf() when the string is dynamic (i.e., you use “%d”
to print variables, etc.)

Tips and Tricks #2

Tips and Tricks #3

How Much Memory Is My Code Using?
— .data is the amount of RAM that your program uses that is defined at

startup as a particular value
* Consumes RAM and ROM

— .bss is the amount of zeroed-out RAM your program uses

e Consumes RAM only

— RAM = .data + .bss (+ Kernel Stack)

— FLASH = .data + .text

— Stack appears in .bss section EXCEPT for Kernel, so add Kernel

stack to RAM figure

Size after:
main.elf

section addr
.data 8388864

.text 0]
.bss 8389084
.stab 0]

.stabstr 0]
Total

RAM = 220 + 1021 + 128 = 1369 bytes

FLASH = 17258 + 220 = 17478 bytes

Total RAM = 4096 bytes
Total ROM = 131072 bytes

16

Tips and Tricks #4

What variables are using up memory?

— Use avr—-nm (name) to find a list of symbols
and how much memory is consumed

avr-nm —S —radix=d —size-sort main.elf

(address) (size)
08388989 00000001 D NRK UART1 TXD

08389446 00000116 B tx buf
00012074 00000118 T nrk event wait

“T” refers to the text section. “B” refers to the BSS (what is
this?) section. “D” refers to the data section. Strings do
not appear in this list because they do not have compiler-
mapped labels.

17

 Read the code for NanoRK and the example applications

* Lecture was only a cursory look at NanoRK
* More information:

 Also read: A. Eswaran, A. Rowe and R. Rajkumar, “Nano-RK: An
Energy-Aware Resource-Centric Operating System for Sensor
Networks,” IEEE Real-Time Systems Symposium, December 2005.

(7))
D
e
@)
c
o
c
LLl

