
Real-time systems on a distributed platform 

Multi-stage systems 
Schedulability analysis for distributed systems 
Restrictions that make analysis easier 
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Lecture overview 

• So far we have spent a lot of time discussing small (uniprocessor) 
systems 

• We studied the behavior of periodic tasks on uniprocessors subject to 
fixed and dynamic priority policies 

• But many computer systems run on distributed components 

•  In this lecture we will study distributed real-time systems 

• Understand the basic elements of schedulability analysis for these 
systems 

2 



Example: Avionics systems 
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Data is processed at multiple nodes 
One task in this application may have multiple stages 
The entire sequence, however, has to meet a deadline 



Schematic of a distributed system 

S1 S2 S3 Sm 

Task Ti has to be processed in m stages 
The end-to-end deadline for the task is Di 
The task is periodic with period Pi 
The execution time of  the task at stage j is ei,j 

Di 

ei,1 ei,2 ei,3 ei,m 
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Deadlines in a distributed system 

• Typically: relative deadlines are greater than the periods of the 
tasks 

• Sometimes, relative deadlines >> periods 

• Example: video transmission in aircraft may involve capturing 
images at 24 frames per second (period = 1/24 = 41.7ms) but a 
deadline of 125ms is sufficient for the captured image to reach 
the pilot 

• Why? Human reaction time is about 125ms, and in all situations a total 
response time of 250ms (time to deliver data + reaction time) is 
typically sufficient 

•  In this example, Di/Pi > 3 
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Applying known techniques 

S1 S2 S3 Sm 

Di 

ei,1 ei,2 ei,3 ei,m 

•  Treat each stage independently 

•  We need tasks to be periodic at each stage 

•  We need to set a relative deadline Di,j for stage j such that 

•  Then we can apply known results to verify that per-stage deadlines are 
met 6 



Deadline distribution 

S1 S2 S3 Sm 

Di 

ei,1 ei,2 ei,3 ei,m 

Di,1 Di,2 Di,3 Di,m 

•  How do we distribute the end-to-end deadline over 
multiple stages? 

•  Hard problem: no efficient method to determine the 
optimal distribution 
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Deadline distribution 

S1 S2 S3 Sm 

Di 

ei,1 ei,2 ei,3 ei,m 

Di,1 Di,2 Di,3 Di,m 

•  We can use heuristics: their performance may vary based on the task 
set being scheduled 

•  Some examples 

•  Even distribution: Di,j = Di/m 

•  Proportional distribution: Di,j = Di x ei,j/(ei,1+ei,2+...+ei,m) 
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Technicalities 

Di 

ei,1 ei,2 ei,3 ei,m 

Di,1 Di,2 Di,3 Di,m 

•  How do we ensure that tasks arrive at each stage periodically? Consider if: 

•  job 1 of  task 1 finishes at stage 1 at time 4 

•  job 2 of  task 1 finishes at stage 1 at time 9 (inter-arrival time of  5) 

•  job 3 of  task 1 finishes at stage 1 at time 17 (inter-arrival time of  8) 

•  job 4 of  task 1 finishes at stage 1 at time 23 (inter-arrival time of  6) 

•  Our theory so far assumes that job arrivals are strictly periodic if  we want a 
schedulability guarantee 

•  We could ensure that a job reaches the next stage only at the relative deadline 
of  the previous stage: requires extra mechanisms (overhead at the OS level) 

Suppose P1=6 and  
Di,1=9 

9 

S1 S2 S3 Sm 



Technicalities 

S1 S2 S3 Sm 

Di 

ei,1 ei,2 ei,3 ei,m 

Di,1 Di,2 Di,3 Di,m 

•  How do we ensure that tasks arrive at each stage periodically?  

•  We could ensure that a job reaches the next stage only at the relative deadline 
of  the previous stage: requires extra mechanisms (overhead at the OS level) 

•  Alternatively, we could also ensure that each job was released to the next 
stage only after the worst-case response time 

•  Compute WCRTs for each stage 

•  If  a job completes early, buffer it and release it to the next stage only when the 
WCRT is reached 
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Synchronization for distributed real-time systems 

•  Synchronization protocols for distributed real-time systems address how tasks 
flow from stage to stage 

•  Requirements of a synchronization protocol 

•  Enforce precedence constraints 

•  Allow schedulability analysis 

•  Low worst-case response time 

•  Low overhead 

•  Low average response time 
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Synchronization for distributed real-time systems 

• Greedy protocol 

• Release a job to the next stage as soon as it completes at the current 
stage 

• Job arrivals may not be periodic (with the exception of the first stage) 

•  Difficult for schedulability analysis 

•  Higher priority tasks may arrive early: increased worst-case response time for 
lower priority tasks 
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Synchronization for distributed real-time systems 

• Phase modification protocol 

• Release a job to the next stage only when the worst-case response time 
for the job is reached at the current stage 

•  Let us suppose that the worst-case response time of task Ti at stage j is Ri,j 

•  Jobs of Ti are released to stage j+1 at time Ri,j, Ri,j+Pi, Ri,j+2Pi, ... 

• Require upper-bound on response times of tasks 

• Require global clocks (subtle point: each stage should be time 
synchronized) 

•  Allows schedulability analysis 

•  Low worst-case response time 

•  Overhead: global clock, buffering requirement 
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Synchronization for distributed real-time systems 

• Release guard protocol 

• Relax the requirement on global clocks 

• At each stage, release an instance of a Ti only if the previous instance of 
Ti was released at least Pi time units earlier 
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Buffering and its problems 

S1 S2 S3 Sm 

Di 

ei,1 ei,2 ei,3 ei,m 

Di,1 Di,2 Di,3 Di,m 

•  The difficulty with ensuring periodicity in a multi-stage (distributed) system is the need for 
buffering 

•  Most current distributed real-time systems do make use of  buffering because they were 
designed when better tests were not known 

•  It is easier to build systems if  we did not have to buffer 

•  But a challenge arises because of  the loss of  periodicity 

•  Is this a real problem? Can we determine if  tasks are schedulable even if  we assume they 
are aperiodic? 

•  Our study till date assumes workload (or utilization) is easy to compute because tasks 
were periodic. How does this change with aperiodic tasks? 
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Highlights 

S1 S2 S3 Sm 

Di 

ei,1 ei,2 ei,3 ei,m 

Di,1 Di,2 Di,3 Di,m 

•  Many modern real-time systems are built on a distributed platform because it is not 
possible to perform all operations on one processor 

•  Tasks thus flow through multiple stages and each instance of  a task needs to meet an 
end-to-end deadline 

•  It is possible to guarantee schedulability by setting intermediate (or per-stage) deadlines 

•  We need to identify a heuristic to set the intermediate deadlines 

•  Then we use the standard uniprocessor analysis for each stage 

•  Setting intermediate deadlines and requiring periodicity at each stage calls for buffering: 
buffering adds to complexity and overhead in a system 
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Real-time communication 

•  What about communication? How does information flow from one stage to the 
next? 

•  Several possibilities 

•  Communication is instantaneous (Unlikely!) 

•  Communication has bounded latency (Somewhat more likely. Add communication latency 
and then ensure that deadlines are met.) 

•  Treat the communication channel as a stage (Most general. Better way to understand 
distributed systems.) 

S1 S2 S3 Sm 

Di 

ei,1 ei,2 ei,3 ei,m 
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Communication media 

• Data buses 

• Ethernet 

• ATM 

•  If these media support prioritized scheduling of messages (packets), we 
can derive latencies introduced because of communication 
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More details: 
Optional reading; 

Improvements to protocols are discussed. 



Synchronization Protocols 

  Goal: Reduce end-to-end response times (EER) 

  Direct Synchronization (DS) Protocol 

  Simple and straightforward 

  Phase Modification (PM) Protocol 

  Proposed by Bettati 

  Release Guard Protocol 

  Proposed by Sun 



Synchronization Protocol - Example 

P1 P2 

(4,2) T1 

(6,2) T2,1 

(6,2) T2,2 

(6,3) T3 

Ti,j – jth subtask of  task Ti 

(period,execution time) 

Period = relative deadline of  parent task 

Task T3 has a phase of  4 time units 



Direct Synchronization Protocol 

  Greedy strategy 

  On completion of subtask 

  A synchronization signal sent to the next processor 
  Successor subtask competes with other tasks/subtasks on the next 

processor 



Direct Synchronization Illustrated 

On P1 

On P2 

T1 

T2,1 

T2,2 

T3 

2 4 6 8 10 12 

2 4 6 8 10 12 

2 4 6 8 10 12 

2 4 6 8 10 12 

Phase of  T3 

T3 
misses 

deadline 

P1 P2 

(4,2) T1 

(6,2) T2,1 

(6,2) T2,2 

(6,3) T3 



Phase Modification Protocol 

  Proposed by Bettati 

  Release subtasks periodically  

  According to the periods of their parent tasks 

  Each subtask given its own phase 

  Phase determined by subtask precedence constraints 



Phase Modification Protocol Illustrated (1/2) 

T1,1 

T1,2 

T1,3 

T1,1 T1,2 T1,3 

Actual response time 

Estimated worst case response time 

Phase 
of  T1,2 Phase 

of  T1,3 

p1 

p1 

p1 



Phase Modification Protocol Illustrated (2/2) 

On P1 

On P2 

T1 

T2,1 

T2,2 

T3 

2 4 6 8 10 12 

2 4 6 8 10 12 

2 4 6 8 10 12 

2 4 6 8 10 12 

Phase of  T3 

P1 P2 

(4,2) T1 

(6,2) T2,1 

(6,2) T2,2 

(6,3) T3 

Phase of  T2,2 



Phase Modification Protocol - Analysis 

  Periodic Timer interrupt to release subtasks 

  Centralized clock or strict clock synchronization 

  Task overruns could cause Precedence constraint violations 



Release Guard Protocol 

  Proposed by Sun 

  A guard variable – release guard - associated with each 
subtask 

  Release guard used to control release of each subtask 

  Contains next release time of subtask 

  Synchronization signals just like MPM 

  Release guard updated 

  On getting synchronization signal 
  During idle time 



Release Guard Protocol Illustrated 

On P1 

On P2 

T1 

T2,1 

T2,2 

T3 

2 4 6 8 10 12 

2 4 6 8 10 12 

2 4 6 8 10 12 

2 4 6 8 10 12 

Phase of  T3 

P1 P2 

(4,2) T1 

(6,2) T2,1 

(6,2) T2,2 

(6,3) T3 

g1,2 = 4+6=10 g1,2 = 9 

Idle time 
detected 



Release Guard Protocol - Analysis 

  Shares the same advantages as MPM 

  Upper bound on EER still the same as MPM 

  Since upper bound on release time enforced by release guard 

Ri,k is the response time of  the kth subtask of  Ti 

ni is the number of  subtasks for the task Ti 

∑ =

in

k
kiR

1
,

  Lower bound on EER less than that of  MPM 

  If  there are idle times 
  Results in lower average EER 


