
Real-time systems on a distributed platform

Multi-stage systems
Schedulability analysis for distributed systems
Restrictions that make analysis easier

1

Lecture overview

• So far we have spent a lot of time discussing small (uniprocessor)
systems

• We studied the behavior of periodic tasks on uniprocessors subject to
fixed and dynamic priority policies

• But many computer systems run on distributed components

•  In this lecture we will study distributed real-time systems

• Understand the basic elements of schedulability analysis for these
systems

2

Example: Avionics systems

3

Data is processed at multiple nodes
One task in this application may have multiple stages
The entire sequence, however, has to meet a deadline

Schematic of a distributed system

S1 S2 S3 Sm

Task Ti has to be processed in m stages
The end-to-end deadline for the task is Di
The task is periodic with period Pi
The execution time of the task at stage j is ei,j

Di

ei,1 ei,2 ei,3 ei,m

4

Deadlines in a distributed system

• Typically: relative deadlines are greater than the periods of the
tasks

• Sometimes, relative deadlines >> periods

• Example: video transmission in aircraft may involve capturing
images at 24 frames per second (period = 1/24 = 41.7ms) but a
deadline of 125ms is sufficient for the captured image to reach
the pilot

• Why? Human reaction time is about 125ms, and in all situations a total
response time of 250ms (time to deliver data + reaction time) is
typically sufficient

•  In this example, Di/Pi > 3

5

Applying known techniques

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

•  Treat each stage independently

•  We need tasks to be periodic at each stage

•  We need to set a relative deadline Di,j for stage j such that

•  Then we can apply known results to verify that per-stage deadlines are
met 6

Deadline distribution

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

Di,1 Di,2 Di,3 Di,m

•  How do we distribute the end-to-end deadline over
multiple stages?

•  Hard problem: no efficient method to determine the
optimal distribution

7

Deadline distribution

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

Di,1 Di,2 Di,3 Di,m

•  We can use heuristics: their performance may vary based on the task
set being scheduled

•  Some examples

•  Even distribution: Di,j = Di/m

•  Proportional distribution: Di,j = Di x ei,j/(ei,1+ei,2+...+ei,m)

8

Technicalities

Di

ei,1 ei,2 ei,3 ei,m

Di,1 Di,2 Di,3 Di,m

•  How do we ensure that tasks arrive at each stage periodically? Consider if:

•  job 1 of task 1 finishes at stage 1 at time 4

•  job 2 of task 1 finishes at stage 1 at time 9 (inter-arrival time of 5)

•  job 3 of task 1 finishes at stage 1 at time 17 (inter-arrival time of 8)

•  job 4 of task 1 finishes at stage 1 at time 23 (inter-arrival time of 6)

•  Our theory so far assumes that job arrivals are strictly periodic if we want a
schedulability guarantee

•  We could ensure that a job reaches the next stage only at the relative deadline
of the previous stage: requires extra mechanisms (overhead at the OS level)

Suppose P1=6 and
Di,1=9

9

S1 S2 S3 Sm

Technicalities

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

Di,1 Di,2 Di,3 Di,m

•  How do we ensure that tasks arrive at each stage periodically?

•  We could ensure that a job reaches the next stage only at the relative deadline
of the previous stage: requires extra mechanisms (overhead at the OS level)

•  Alternatively, we could also ensure that each job was released to the next
stage only after the worst-case response time

•  Compute WCRTs for each stage

•  If a job completes early, buffer it and release it to the next stage only when the
WCRT is reached

10

Technicalities

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

Di,1 Di,2 Di,3 Di,m

•  How do we ensure that tasks arrive at each stage periodically?

•  We could ensure that a job reaches the next stage only at the relative deadline
of the previous stage: requires extra mechanisms (overhead at the OS level)

•  Alternatively, we could also ensure that each job was released to the next
stage only after the worst-case response time

•  Compute WCRTs for each stage

•  If a job completes early, buffer it and release it to the next stage only when the
WCRT is reached

11

Synchronization for distributed real-time systems

•  Synchronization protocols for distributed real-time systems address how tasks
flow from stage to stage

•  Requirements of a synchronization protocol

•  Enforce precedence constraints

•  Allow schedulability analysis

•  Low worst-case response time

•  Low overhead

•  Low average response time

12

Synchronization for distributed real-time systems

• Greedy protocol

• Release a job to the next stage as soon as it completes at the current
stage

• Job arrivals may not be periodic (with the exception of the first stage)

•  Difficult for schedulability analysis

•  Higher priority tasks may arrive early: increased worst-case response time for
lower priority tasks

13

Synchronization for distributed real-time systems

• Phase modification protocol

• Release a job to the next stage only when the worst-case response time
for the job is reached at the current stage

•  Let us suppose that the worst-case response time of task Ti at stage j is Ri,j

•  Jobs of Ti are released to stage j+1 at time Ri,j, Ri,j+Pi, Ri,j+2Pi, ...

• Require upper-bound on response times of tasks

• Require global clocks (subtle point: each stage should be time
synchronized)

•  Allows schedulability analysis

•  Low worst-case response time

•  Overhead: global clock, buffering requirement

14

Synchronization for distributed real-time systems

• Release guard protocol

• Relax the requirement on global clocks

• At each stage, release an instance of a Ti only if the previous instance of
Ti was released at least Pi time units earlier

15

Buffering and its problems

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

Di,1 Di,2 Di,3 Di,m

•  The difficulty with ensuring periodicity in a multi-stage (distributed) system is the need for
buffering

•  Most current distributed real-time systems do make use of buffering because they were
designed when better tests were not known

•  It is easier to build systems if we did not have to buffer

•  But a challenge arises because of the loss of periodicity

•  Is this a real problem? Can we determine if tasks are schedulable even if we assume they
are aperiodic?

•  Our study till date assumes workload (or utilization) is easy to compute because tasks
were periodic. How does this change with aperiodic tasks?

16

Highlights

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

Di,1 Di,2 Di,3 Di,m

•  Many modern real-time systems are built on a distributed platform because it is not
possible to perform all operations on one processor

•  Tasks thus flow through multiple stages and each instance of a task needs to meet an
end-to-end deadline

•  It is possible to guarantee schedulability by setting intermediate (or per-stage) deadlines

•  We need to identify a heuristic to set the intermediate deadlines

•  Then we use the standard uniprocessor analysis for each stage

•  Setting intermediate deadlines and requiring periodicity at each stage calls for buffering:
buffering adds to complexity and overhead in a system

17

Real-time communication

•  What about communication? How does information flow from one stage to the
next?

•  Several possibilities

•  Communication is instantaneous (Unlikely!)

•  Communication has bounded latency (Somewhat more likely. Add communication latency
and then ensure that deadlines are met.)

•  Treat the communication channel as a stage (Most general. Better way to understand
distributed systems.)

S1 S2 S3 Sm

Di

ei,1 ei,2 ei,3 ei,m

18

Communication media

• Data buses

• Ethernet

• ATM

•  If these media support prioritized scheduling of messages (packets), we
can derive latencies introduced because of communication

19

More details:
Optional reading;

Improvements to protocols are discussed.

Synchronization Protocols

  Goal: Reduce end-to-end response times (EER)

  Direct Synchronization (DS) Protocol

  Simple and straightforward

  Phase Modification (PM) Protocol

  Proposed by Bettati

  Release Guard Protocol

  Proposed by Sun

Synchronization Protocol - Example

P1 P2

(4,2) T1

(6,2) T2,1

(6,2) T2,2

(6,3) T3

Ti,j – jth subtask of task Ti

(period,execution time)

Period = relative deadline of parent task

Task T3 has a phase of 4 time units

Direct Synchronization Protocol

  Greedy strategy

  On completion of subtask

  A synchronization signal sent to the next processor
  Successor subtask competes with other tasks/subtasks on the next

processor

Direct Synchronization Illustrated

On P1

On P2

T1

T2,1

T2,2

T3

2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

Phase of T3

T3
misses

deadline

P1 P2

(4,2) T1

(6,2) T2,1

(6,2) T2,2

(6,3) T3

Phase Modification Protocol

  Proposed by Bettati

  Release subtasks periodically

  According to the periods of their parent tasks

  Each subtask given its own phase

  Phase determined by subtask precedence constraints

Phase Modification Protocol Illustrated (1/2)

T1,1

T1,2

T1,3

T1,1 T1,2 T1,3

Actual response time

Estimated worst case response time

Phase
of T1,2 Phase

of T1,3

p1

p1

p1

Phase Modification Protocol Illustrated (2/2)

On P1

On P2

T1

T2,1

T2,2

T3

2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

Phase of T3

P1 P2

(4,2) T1

(6,2) T2,1

(6,2) T2,2

(6,3) T3

Phase of T2,2

Phase Modification Protocol - Analysis

  Periodic Timer interrupt to release subtasks

  Centralized clock or strict clock synchronization

  Task overruns could cause Precedence constraint violations

Release Guard Protocol

  Proposed by Sun

  A guard variable – release guard - associated with each
subtask

  Release guard used to control release of each subtask

  Contains next release time of subtask

  Synchronization signals just like MPM

  Release guard updated

  On getting synchronization signal
  During idle time

Release Guard Protocol Illustrated

On P1

On P2

T1

T2,1

T2,2

T3

2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

Phase of T3

P1 P2

(4,2) T1

(6,2) T2,1

(6,2) T2,2

(6,3) T3

g1,2 = 4+6=10 g1,2 = 9

Idle time
detected

Release Guard Protocol - Analysis

  Shares the same advantages as MPM

  Upper bound on EER still the same as MPM

  Since upper bound on release time enforced by release guard

Ri,k is the response time of the kth subtask of Ti

ni is the number of subtasks for the task Ti

∑ =

in

k
kiR

1
,

  Lower bound on EER less than that of MPM

  If there are idle times
  Results in lower average EER

