Real-time systems on a distributed platform

Multi-stage systems
Schedulability analysis for distributed systems
Restrictions that make analysis easier

Lecture overview

e So far we have spent a lot of time discussing small (uniprocessor)
systems

e We studied the behavior of periodic tasks on uniprocessors subject to
fixed and dynamic priority policies

e But many computer systems run on distributed components

¢ |n this lecture we will study distributed real-time systems

e Understand the basic elements of schedulability analysis for these
systems

Example: Avionics systems

Disrbuted Precessing Modules

o . Radar soerures
Engne Contro

Hedrat Moumad ODisplays
Heads Down Deplays

\,éd IofiriBad VAN
-1 = Swich

v e
A

Targat (| wi-s10-1780
P D-1780
Crance TCA fiyms
TCA] Adester meriace
— 1760

Data is processed at multiple nodes
One task in this application may have multiple stages
The entire sequence, however, has to meet a deadline

Schematic of a distributed system

€i,1 €2 €3

—_— S1 —_— SZ —_— S3 —— - — -

T

D;i

Task Ti has to be processed in m stages

The end-to-end deadline for the task is D,
The task is periodic with period P;

The execution time of the task at stage jis e,

Deadlines in a distributed system

* Typically: relative deadlines are greater than the periods of the
tasks

e Sometimes, relative deadlines >> periods

e Example: video transmission in aircraft may involve capturing
images at 24 frames per second (period = 1/24 = 41.7ms) but a
deadline of 125ms is sufficient for the captured image to reach
the pilot

e Why? Human reaction time is about 125ms, and in all situations a total
response time of 250ms (time to deliver data + reaction time) is

typically sufficient
¢ In this example, D/P; > 3

Applying known techniques

€i,1 €i,2 €3 €i,m

—_— S1 —_— SZ —_— S3 —— - — - Sm —_—

:

D, j
e Treat each stage independently

e We need tasks to be periodic at each stage

e We need to set a relative deadline Dj;for stage jsuch that

i Di,j — Dz
=1

e Then we can apply known results to verify that per-stage deadlines are
met

Deadline distribution

€i,1 €i2 €i,3 €i,m
— S1 — SZ — S3 —— - — Sm —
I I | ____| ,|
1 I , I I
D/ 1 DIZ DI,3 Dlm
Di |

e How do we distribute the end-to-end deadline over
multiple stages?

e Hard problem: no efficient method to determine the
optimal distribution

Deadline distribution

€i,1 €i2 €i,3 €i,m
— S1 — SZ — S3 — - Sm —
I J | o __ .| ,|
1 , I I I .
Di 1 DI,2 Di s Dl,m
Di |

e We can use heuristics: their performance may vary based on the task
set being scheduled

e Some examples
e Even distribution: D;; = Di/im

e Proportional distribution: D = D; x eij/(ei1+e€iz2+...+€im)

Technicalities

€i,1 €iz2 €i3 €i,m
- | S1 - 82 - SS - . -~ ° Sm -
Suppose Ps=6 and ‘) === -|
PP Di1=9 Di 1 D2 Di s Dim |
Di |

e How do we ensure that tasks arrive at each stage periodically? Consider if:
e job 1 of task 1 finishes at stage 1 at time 4
e job 2 of task 1 finishes at stage 1 at time 9 (inter-arrival time of 5)
¢ job 3 of task 1 finishes at stage 1 at time 17 (inter-arrival time of 8)

e job 4 of task 1 finishes at stage 1 at time 23 (inter-arrival time of 6)

e Our theory so far assumes that job arrivals are strictly periodic if we want a
schedulability guarantee

e We could ensure that a job reaches the next stage only at the relative deadline
of the previous stage: requires extra mechanisms (overhead at the OS level)

Technicalities

€i1 €i2 €i,3 €im
— S1 — 82 — S 3 ——>—=--- Sm —
Di 1 D> Dis Dim .|
D;i |

e How do we ensure that tasks arrive at each stage periodically?

e We could ensure that a job reaches the next stage only at the relative deadline
of the previous stage: requires extra mechanisms (overhead at the OS level)

e Alternatively, we could also ensure that each job was released to the next
stage only after the worst-case response time

e Compute WCRTs for each stage

e If ajob completes early, buffer it and release it to the next stage only when the
WCRT is reached

10

Technicalities

€i1 €i2 €i,3 €im
— S1 — 82 — S 3 ——>—=--- Sm —
Di 1 D> Dis Dim .|
D;i |

e How do we ensure that tasks arrive at each stage periodically?

e We could ensure that a job reaches the next stage only at the relative deadline
of the previous stage: requires extra mechanisms (overhead at the OS level)

e Alternatively, we could also ensure that each job was released to the next
stage only after the worst-case response time

e Compute WCRTs for each stage

e If ajob completes early, buffer it and release it to the next stage only when the
WCRT is reached

Synchronization for distributed real-time systems

e Synchronization protocols for distributed real-time systems address how tasks
flow from stage to stage

e Requirements of a synchronization protocol
e Enforce precedence constraints
e Allow schedulability analysis
e Low worst-case response time
e Low overhead

e Low average response time

12

Synchronization for distributed real-time systems

e Greedy protocol

e Release a job to the next stage as soon as it completes at the current
stage

e Job arrivals may not be periodic (with the exception of the first stage)

e Difficult for schedulability analysis

e Higher priority tasks may arrive early: increased worst-case response time for
lower priority tasks

13

Synchronization for distributed real-time systems

¢ Phase modification protocol

e Release a job to the next stage only when the worst-case response time
for the job is reached at the current stage

¢ Let us suppose that the worst-case response time of task 7;jat stage j is Ri;
e Jobs of T;are released to stage j+1 at time R;j, Rij+Pi, Rij+2P;, ...
e Require upper-bound on response times of tasks

e Require global clocks (subtle point: each stage should be time
synchronized)

e Allows schedulability analysis
e Low worst-case response time

e Overhead: global clock, buffering requirement

14

Synchronization for distributed real-time systems

e Release guard protocol
¢ Relax the requirement on global clocks

e At each stage, release an instance of a 7T;only if the previous instance of
Tiwas released at least P time units earlier

15

Buffering and its problems

€i1 eiz ei3 €eim
—_— S1 — SZ — S3 —— - - Sm —
o]
Di 1 Di > Di s Dim
Di |

¢ The difficulty with ensuring periodicity in a multi-stage (distributed) system is the need for
buffering

e Most current distributed real-time systems do make use of buffering because they were
designed when better tests were not known

e |tis easier to build systems if we did not have to buffer
e But a challenge arises because of the loss of periodicity

e |s this a real problem? Can we determine if tasks are schedulable even if we assume they
are aperiodic?

e Our study till date assumes workload (or utilization) is easy to compute because tasks
were periodic. How does this change with aperiodic tasks?

16

Highlights

€i1 eiz ei3 €eim
—_— S1 — SZ — S3 —— - - Sm —
o]
Di 1 Di > Di s Dim
Di |

e Many modern real-time systems are built on a distributed platform because it is not
possible to perform all operations on one processor

e Tasks thus flow through multiple stages and each instance of a task needs to meet an
end-to-end deadline

e |tis possible to guarantee schedulability by setting intermediate (or per-stage) deadlines
e We need to identify a heuristic to set the intermediate deadlines
e Then we use the standard uniprocessor analysis for each stage

e Setting intermediate deadlines and requiring periodicity at each stage calls for buffering:
buffering adds to complexity and overhead in a system

17

Real-time communication

€i,1 €2 €3 eim

s s

—_— S1 — SZ —_— S3 —— - — - Sm —_—

:

Di ﬁl

e What about communication? How does information flow from one stage to the
next?

e Several possibilities
e Communication is instantaneous (Unlikely!)

e Communication has bounded latency (Somewhat more likely. Add communication latency
and then ensure that deadlines are met.)

¢ Treat the communication channel as a stage (Most general. Better way to understand

distributed systems.)
18

Communication media

e Data buses
e Ethernet
e ATM

¢ If these media support prioritized scheduling of messages (packets), we
can derive latencies introduced because of communication

19

More details:
Optional reading;
Improvements to protocols are discussed.

Synchronization Protocols

Goal: Reduce end-to-end response times (EER)
Direct Synchronization (DS) Protocol
= Simple and straightforward

Phase Modification (PM) Protocol
" Proposed by Bettati

Release Guard Protocol
* Proposed by Sun

Synchronization Protocol - Example

T (4,2
142 T,. | (62
P1 P2
T2,1 (6’2) T3 (6,3)
T;;— " subtask of task T; Task T3 has a phase of 4 time units

(period,execution time)
Period = relative deadline of parent task

Direct Synchronization Protocol

= Greedy strategy

= On completion of subtask

= A synchronization signal sent to the next processor

= Successor subtask competes with other tasks/subtasks on the next
processor

Direct Synchronization lllustrated

T1 ((4,2) T22 |(6,2)
P1 P2
T2 ((6,2) Ts/(6,3)
| |
12
|
12
|
12 Ts
misses
deadline
|
12

Phase Modification Protocol

Proposed by Bettati

Release subtasks periodically
= According to the periods of their parent tasks

Each subtask given its own phase

Phase determined by subtask precedence constraints

Phase Modification Protocol lllustrated (1/2)

o 8 00
T1 ,2 \ 4 p >
1
T — _|o - S
1

Phase
of T4, Phase
of T3
. Actual response time

- Estimated worst case response time

Phase Modification Protocol lllustrated (2/2)

Phase of T, ;‘

T

T2,1

(4.2)

P1

(6,2)

<

2 4

T2,2

Ts

(6,2)

P2

(6,3)

Phase Modification Protocol - Analysis

= Periodic Timer interrupt to release subtasks
= Centralized clock or strict clock synchronization

= Task overruns could cause Precedence constraint violations

Release Guard Protocol

Proposed by Sun

A guard variable — release guard - associated with each
subtask

Release guard used to control release of each subtask

= Contains next release time of subtask

Synchronization signals just like MPM

Release guard updated

= On getting synchronization signal
* Duringidle time

Release Guard Protocol lllustrated

T1 ((4,2) T22 |(6,2)

P1 P2
T2 ((6,2) Ts/(6,3)

Idle time

Phase of T, detected

Release Guard Protocol - Analysis

= Shares the same advantages as MPM

= Upper bound on EER still the same as MPM
= Since upper bound on release time enforced by release guard
ni

Ri
k=1

@is the response time of the /7 subtask of T;
71,is the number of subtasks for the task T;

= Lower bound on EER less than that of MPM

= |f there are idle times
= Results in lower average EER

