Soft Real-Time Systems

EECE 494 – Real-Time Systems Design

Elastic scheduling of real-time tasks

<u>Ref:</u> Elastic task model for adaptive rate control. Buttazzo, Lipari and Abeni. IEEE Real-Time Systems Symposium, 1998.

Many models for soft real-time systems

Why?

- There are a variety of soft real-time systems.
- And there are a variety of ways in which their behaviour can be altered.
 - In a multimedia system...
 - Frames can be dropped, i.e., jobs can be skipped.
 - Alternatively, it is possible to reduce the frame rate.
 - □ Move from 60 fps to 30 fps or to 24 fps.
 - □ We are changing the periodicity of a task.

The elastic task model provides a natural abstraction for such tasks.

UBC | EECE 494 | Real-Time Systems

Elastic task scheduling

What if we need all jobs to meet their deadlines... but we can allow tasks to execute at lower frequencies (higher periods)?

Then we need to understand

- When should we increase task periods?
- And increase the periods by what extent?
- And for which tasks?

Task model for elastic scheduling

For each task T_i :

- There is an operating period range [P_{i,min}, P_{i,max}]
 - P_{i,min} is the best possible period
- There is also a value P_{i,0} that represents a nominal period
 - This nominal period is preferred when we can not run the task at the best possible period
- For a hard real-time task:
 - $\mathbf{P}_{i,\min} = \mathbf{P}_{i,\max} = \mathbf{P}_{i,0}$
- If $P_{i,0} = P_{i,max}$ and $P_{i,min} \leq P_{i,max}$, the task is very flexible (highly elastic)
- Only periods can be varied; execution times are constant

Task model for elastic scheduling

For each task T_i :

There is also an elasticity factor k_i that represents the flexibility of the task

Additional parameters

Task	e _i	P _{i,0}	P _{i,min}	P _{i,max}	k _i
T ₁	10	20	20	25	1
T ₂	10	40	40	50	1
T ₃	15	70	35	80	1

UBC | EECE 494 | Real-Time Systems

Schedulability analysis

We will assume utilization bounds are used for testing schedulability.

- Depending on the scheduling policy (EDF or RM), we know the utilization bound U_b
- The goal of the elasticity is to ensure that the utilization of the set of tasks does not exceed U_b
- Of course, we need to scale down task utilizations if the processor utilization threatens to exceed U_b (for instance, when we add a new task)
- How do we scale down task utilizations?

An example

Task	e _i	P _{i,0}	P _{i,min}	P _{i,max}	k _i
T ₁	10	20	20	25	1
T ₂	10	40	40	50	1
T ₃	15	70	35	80	1

- Is this task set schedulable using EDF?
 - If each task were to use its nominal period then:
 - ▶ U = 10/20 + 10/40 + 15/70 = 0.964 < 1.
 - To improve the QoS for T₃, we would like to use a period of 50 (between 35 and 80):
 - ▶ U = 10/20 + 10/40 + 15/50 = 1.05 > 1.
 - We could adjust the periods of T_1 (set to 22) and T_2 (set to 45):
 - ▶ U = 10/22 + 10/45 + 15/50 = 0.977.

The adjustment seems ad hoc. Can we systematically adjust task periods?

- At time instant t, let us suppose that task T_i is operating with period P_i
 - Some of the tasks could be operating at the highest possible period P_i = P_{i,max}
 - We cannot increase the periods of these tasks
 - Denote this *set of tasks* by *M*

$$U_M = \sum_{T_i \in M} \frac{e_i}{P_{i,max}}$$

If the utilization bound is U_b , then the remaining tasks – those not in M – cannot have a combined utilization greater than U_b - U_M .

- Let the set of tasks with variable/ adjustable periods be *V*.
- U₀ is the combined nominal utilization of tasks in set V.

• If $U_0 = U_b - U_M$, set the periods of all tasks in V to their nominal periods.

- If U₀ < U_b-U_M, we can improve the QoS for some tasks.
- If U₀ > U_b-U_M, we need to reduce the QoS for some tasks.

If the utilization bound is U_b , then the remaining tasks – those not in M – cannot have a combined utilization greater than U_b - U_M .

$$U_0 = \sum_{T_i \in V} \frac{e_i}{P_{i,0}}$$

- If $U_0 < U_b U_M$, we can improve the QoS for some tasks.
- How do we adjust task utilizations?
 - Use the elasticity coefficients, k_i.

$$\forall T_i \in V : U_i = U_{i,0} + (U_b - U_M - U_0) \frac{k_i}{\sum_{T_j \in V} k_j}$$

• What if $U_0 > U_b - U_M$?

We do not need a new solution!

$$\forall T_i \in V : U_i = U_{i,0} + (U_b - U_M - U_0) \frac{k_i}{\sum_{T_j \in V} k_j}$$

UBC | EECE 494 | Real-Time Systems

- What do we do if the adjustment causes a task T_i to have a period greater then P_{i,max}?
 - We have to set the period of that task to P_{i,max},
 - Add this task to set M,
 - Remove the task from set V,
 - And try to adjust the periods once more for the task in V.

Detailed algorithm

Elastic task model for adaptive rate control. Buttazzo, Lipari and Abeni. RTSS 1998.

Algorithm Task_compress(Γ , U_d) {

 $\begin{aligned} U_0 &= \sum_{i=1}^n C_i / T_{i_0}; \\ U_{min} &= \sum_{i=1}^n C_i / T_{i_{max}}; \\ \text{if} (U_d < U_{min}) \text{ return INFEASIBLE}; \end{aligned}$

do {

$$\begin{array}{l} U_{f} = E_{v} = 0; \\ \text{for } (each \ \tau_{i}) \left\{ & \text{if } ((e_{i} == 0) \ \text{or } (T_{i} == T_{i_{max}})) \\ & U_{f} = U_{f} + U_{i}; \\ \text{else } E_{v} = E_{v} + e_{i}; \\ \end{array} \right\} \\ ok = 1; \\ \text{for } (each \ \tau_{i} \in \Gamma_{v}) \left\{ & \text{if } ((e_{i} > 0) \ \text{and } (T_{i} < T_{i_{max}})) \left\{ & U_{i} = U_{i_{0}} - (U_{0} - U_{d} + U_{f})e_{i}/E_{v}; \\ & T_{i} = C_{i}/U_{i}; \\ & \text{if } (T_{i} > T_{i_{max}}) \left\{ & T_{i} = T_{i_{max}}; \\ & ok = 0; \\ & \end{array} \right\} \\ \end{array} \\ \\ \begin{array}{l} \text{while } (ok \ == \ 0); \\ \text{return FEASIBLE}; \end{array} \end{cases}$$

The elasticity analogy

Do not worry about the terminology here.

UBC | EECE 494 | Real-Time Systems

Compression and decompression

- When workload reduces, which may be because a task is complete and is removed from the task set, other tasks can expand or return to their nominal utilizations.
- Compression/decompression refer to the utilization of the task.
 - Increasing the period compresses the utilization.
 - Decreasing the period expands the utilization.

When do we compress/decompress?

- Can we increase or decrease the period of a task at any time instant?
 - > Periods can be increased at any time (immediately).
 - Periods can be decreased (utilization increased) only at the next release time of the task.
 - If you want the detailed proof, consult the reference article.]

Why decompress at specific instants?

- Originally, U = 3/10 + 2/3 = 0.9666 < 1.
- After changing periods at t=14: U = 3/5 + 2/6 = 0.9666 < 1.
- If the period of T₁ is changed at once (at t=14), T₁ misses a deadline.

UBC | EECE 494 | Real-Time Systems

Highlights

The elastic task model

- Allows period (rate) adaptation in a real-time system.
- Analogous to physical spring systems.
- Like skip-based scheduling, elastic scheduling is suitable for multimedia applications.
- Also useful in manufacturing applications.
 - Silicon wafers processed in a semiconductor plant.
 - We can reduce the rate of processing but we cannot skip a wafer.

What you should know

- How do we adjust the periods of tasks?
- When can we adjust the periods of tasks?
- Period changes are performed, typically, when a new task is added to the system (may need to compress tasks) or when a task is removed (can decompress remaining tasks).
- The choice of which soft real-time model to adopt depends on the application and the expected behaviour.

Tasks with variable execution times

<u>Ref:</u> Algorithms for scheduling imprecise computations. Liu, et al. IEEE Computer, vol. 25, no. 5, May 1991.

Lecture overview

- Elastic scheduling allows us to adjust task periods at times of overload
- In this lecture, we will examine a third approach
 - Imprecise computation, which trades accuracy of computation for schedulability
 - Assumes that the accuracy of computation is related to the execution time allotted to the task

Why is the imprecise computation model useful?

- The case for imprecise computations
- For specific applications, approximate results may suffice
 - Image processing (fuzzy frames)
 - Object tracking (location estimates rather than accurate location)
 - Artificial intelligence algorithms typically perform a search (shorter search time results in a lower quality result)
 - Google's search is not a bad example

000	O UBC – Google Search		
G · O · 🕄 😣 👌 🚽	TAG http://www.google.ca/search?q=UBC&ie=utf-8&oe	e=utf-8&aq=t&rls=org.mozilla:en- 🔻 🎓 🕻	- UBC PC
길 GTD 길 Courses 길 Music 길 Ne	ews 🕕 Vancouver 🛺 UBC 🔑 ECE <u>G</u> iGoogle 📄 CiteULik	e 📄 Tumbir	<mark>l</mark> ™ sathish -
F 🔹 🔄 Recently Bookmarked 👻 📄	DeSmogBlog 📄 Active Spam Killer 脂 happyfrog.ca 🎈 Cool E	arth Action 🙋 BBC/OU Open2.net 📄 M5 🛛	William Stallings
Web Images Maps News Vide	o Gmail <u>more</u> ▼		Sign in
Google" UBC Search: (• the web C pages from Canada	Advanced Search Preferences	
Web		Results 1 - 10 of about 7,	710,000 for UBC. (0.07 seconds)
Welcome to the University of Welcome to UBC.ca, the University of www.ubc.ca/ - 16k - Cached - Similar	of British Columbia's central web site.		
Faculties & Schools Students About UBC Faculty & Staff	Directories Search Teaching & Learning Library Home Page	Can return fewer page	s if out of time.
	Search ubc.ca		
Canada. www.physics.ubc.ca/ - 17k - Cached UBC Library Home Page Learning, knowledge, research, insigh second-largest academic research lib www.library.ubc.ca/ - 20k - Cached - UBC Department of Economic Provides faculty directory, course scl www.econ.ubc.ca/ - 7k - Cached - Sii UBC - Computer Science Department of Computer Science. Re intelligence, database systems, distri	nt: welcome to the world of UBC Library, the rary in Canada. Similar pages s Main Page hedule, and degree information. milar pages esearch areas include computer graphics, artificial buted systems,		
UBC sports teams. www.gothunderbirds.ca/ - 23k - Cache UBC Chemistry Department	udes schedules, information, recruiting, and news for all ed - Similar pages Department of Chemistry. This site provides information udies in chemistry at the		
Done		🔲 Sr 😀 📒	🕽 Open Notebook 🛛 🔀 14 Mail 4

How do we achieve the imprecise computation model?

• We assume that tasks are iterative

- The number of iterations suggests quality (fewer iterations imply lower quality)
- Terminate the task after a few iterations with acceptable quality
- Tasks may have a <u>mandatory part</u>
 - Any computation beyond this mandatory portion improves the quality but the task is meaningless without the mandatory portion

More examples

- Radar tracking: Get estimated target locations in a timely fashion rather than accurate information that is too late to be of use
- Multimedia systems: Transmit a low quality image in time rather than missing the deadline, e.g., to meet the 24 fps requirement
- Control systems: Produce an approximate result by a control law as long as the controlled system, e.g., cruise control system, remains stable

Scheduling imprecise tasks

- Tasks are periodic with known period (P_i) and an execution time range [e_{i,min}, e_{i,max}]
- e_{i,min} represents the mandatory execution required by each task
- The accuracy of a task is highest when each job executes for e_{i,max} time units

First step

- Ensure that the mandatory portions of all tasks are schedulable
- If tasks are scheduled with rate monotonic priorities, we can use the Liu & Layland bound

$$\sum_{i=1}^{n} \frac{e_{i,min}}{P_i} \le n(2^{1/n} - 1)$$

Example task set

Task	E _{min}	E _{max}	Р
T1	2	7	10
T2	4	8	25
Т3	6	10	30

$$\frac{2}{10} + \frac{4}{25} + \frac{6}{30} = 0.56 < 3(2^{1/3} - 1)$$

The mandatory portion of this task set is schedulable.

Scheduling imprecise tasks

- Once we have ensured that the mandatory portions are schedulable, we have many options
- The loss in accuracy for each task can be specified by some error function F
 - **Let** e_i be the execution time of T_i then the error is some function of e_i and e_{i,max}
- We could decide to minimize the (weighted) sum of errors
 - How do we find the values for {e_i} that minimize the error?

A simple error function

• $F(e_{i,max}, e_i) = e_{i,max} - e_i$ is a simple error function

Let us also assume that the weight of each task is 1.

$$\begin{split} \min \sum_{i=1}^{n} (e_{i,max} - e_i) \\ \text{subject to} \\ e_i \geq e_{i,min}, \forall i \\ e_i \leq e_{i,max}, \forall i \\ \sum_{i=1}^{n} \frac{e_i}{P_i} \leq n(2^{1/n} - 1) \end{split}$$

A simple linear program

Solving the linear program

$\min \sum_{i=1}^{n} (e_{i,max} - e_i)$
subject to
$e_i \geq e_{i,min}, orall i$
$e_i \leq e_{i,max}, orall i$
$\sum_{i=1}^{n} \frac{e_i}{P_i} \le n(2^{1/n} - 1)$

Task	E _{min}	E _{max}	Р
T1	2	7	10
T2	4	8	25
Т3	6	10	30

Greedy algorithm

- Intuition: increasing the execution time of a task by x decreases error by x.
- The task with the largest period has the least utilization penalty.
 - Determine 1/P_i for each task. This is the utilization penalty for increasing the execution time of T_i by 1 time unit.
 - > Simplifying assumption: execution times are integers (or can be represented as integers).
- Increase the execution time of the task with the smallest utilization penalty to the maximum extent possible.
- > Then move to the task with the next smallest utilization penalty.
- Repeat until the utilization bound is reached or no further progress is possible.

Solving the linear program

Task	E _{min}	E _{max}	Ρ
T1	2	7	10
T2	4	8	25
Т3	6	10	30

- > The mandatory utilization is 0.56. The Liu & Layland bound for 3 tasks is 0.7797.
- The utilization penalty for T3 is 1/30=0.0333, for T2 is 1/25=0.04, for T1 is 1/10=0.1.
- We can increase the execution time of T3 by 4 units at a cost of 4 x 0.0333 = 0.1333
 - > The total utilization now becomes 0.6933.
- We can increase the execution time of T2 by 2 units at a cost of 2 x 0.04 = 0.08
 - The total utilization now becomes 0.7733.
- We cannot make any further increases without violating the utilization bound.
 - Thus we stop.
- <u>An</u> optimal solution is $e_1=2$, $e_2=6$, $e_3=10$.

Highlights

- We examined another task model for providing good QoS for soft real-time systems.
- The imprecise computation model trades off execution time for accuracy.
- Different applications need different approaches to obtaining good *quality of service.*
- For each task parameter, we have studied some mechanism by which they can be controlled and the entire system behaves in a "predictable" manner.

What you should know

- What is the imprecise computation model?
- Why, and where, is it useful?
- How do you decide execution times under this model?
 - **Solve for the simple case of linear error function.**
- Ponder: Can we use elastic scheduling when tasks have variable execution times? What should the parameters for such task sets be?