
Reliability and safety in real-time systems 

Examples and basic principles 



Overview 

  Real-Time Systems need to be reliable! 

  In this slide set, we will talk about some of 
the techniques to make fault-tolerant 
systems (this is a pre-requisite to making a 
safe system). 

  Rather than focus on the large amount of 
theory in this area, we’ll emphasize a few 
examples: 
  Therac-25 
  CANDU Reactors 
  Space Shuttle 
  Modern Passenger Jets 
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What should you learn? 
  What is the difference between reliability, security and 

safety? 
  What are the steps from the time an error occurs to 

when a system fails? 
  What are some of the causes of errors? 
  What are some of the approaches to fault tolerance? 

  What are the differences between hardware and software 
schemes? 
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Mercedes-Benz recalled 1 in 3 of the cars it produced in the past 4 years to fix 
electronic problems… 

Financial Times: March 31, 2005 

…Final quarter of last year, Mercedes’s profits dropped 97%... 

… sharp rise in breakdowns was due to the failure of the complex electronics in 
its cars… 

…it is extremely rare to recall more cars than a company builds in a year. 
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Motivating example: Therac-25 

  Medical linear accelerator 
  Used to treat tumors with either:  

  Electron beams for shallow tissue 
  X-Ray beams for deep tissue 

  Eleven Therac-25s were installed 
  Six in Canada 
  Five in the United States 

  Developed by Atomic Energy of Canada Limited (AECL). 
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Therac-25 
  Could deliver either electron therapy or X-ray therapy 
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Counterweight 

Field Light Mirror 

Beam Flattener (X-
ray Mode) 

Scan Magnet 
(Electron Mode) 

Turntable 
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  Six patients were delivered severe 
overdoses of radiation between 1985 
and 1987. 
  Four of these patients died. 

  Why? 
  The turntable was in the wrong position. 
  Patients were receiving x-rays without 

beam-scattering. 
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Therac-25 
  How could this happen?  

  Race conditions in the software 
  Multiple threads did not lock variables properly 

  Overflow error. 
  The turntable position was not checked every 256th time a certain 

variable was incremented. 

  No hardware safety interlocks. 
  User interface errors, and wrong information on console. 
  Non-descriptive error messages. 

  “Malfunction 54” 
  “H-tilt” 

  Too easy to just hit “P” (Proceed) 
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For details on this, there is a very 
complete article linked to the 
course web site. 
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  Security: A measure of confidence that 
the system can resist attempts to 
modify its behaviour. 

  Reliability:  A measure of confidence 
that the system produces accurate and 
consistent results. 

  Safety:  A measure of confidence that 
the system will not cause accidents. 

  Security and Reliability are necessary, 
but not sufficient conditions of safety. 

Some definitions 
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Note that safety and reliability can be in conflict. 
“The safest plane is one that never leaves the 

ground”. 

Good engineering always involves a tradeoff 
between safety and reliability. 
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What should we be worried about? 
  Computers are composed of hardware, software, and 

data 

  The software defines the operations 
  The hardware performs the operations 
  The data records the results of the operations 

  We have to worry about all three of these 
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Hardware Software Data 

Cause of 
Failure 

Deficiencies in design, 
production or 
maintenance 

Design (logic) errors Transient Events 

Occurrences  Will eventually fail May never fail May never fail 

Failure Rates Can be predicted in 
theory from physical 
principles 

Can not be predicted 
from physical 
principles 

Some upset rates can 
be predicted from test 

Redundancy Will improve reliability, 
but may be susceptible 
to common cause 
failures 

Will not improve 
reliability, since this 
will only replicate 
same failure 

May improve reliability 

Diversity Will improve reliability, 
should be less 
susceptible to common 
cause failures 

Will improve reliability 
since it minimizes 
possibility of same 
error occurring in 
separate modules 

Will improve reliability 
since it minimizes 
possibility of same 
error occurring in 
separate modules 

Modified from A. Tribble, 23rd Digital Avionics System Conference 15 



Hardware Software Data 

Environmental 
Factors 

Dependant on 
temperature, 
humidity, stress, etc. 

Dependent on internal 
environment of 
computer (memory, 
clock speed, etc.) 

Dependent on both 
external (radiation, 
EMI, etc.) and internal 
environment (memory, 
clock speed, etc.) 

Time 
Dependence 

Is time dependent.  
Failures can be 
increasing, constant 
or decreasing 

Not time dependent.  
Failures occur when 
path that contains 
error is executed 

Is time dependent.  
Failures can be 
increasing, constant or 
decreasing 

Wear-Out Responsible for some 
failures.  May be 
preceded by a 
warning. 

Not responsible for 
any failures 

Not responsible for 
any failures 

Preventative 
Maintenance 

Can improve 
reliability  

Will not improve 
reliability, and may 
actually worsen it 

Will not improve 
reliability 

Modified from A. Tribble, 23rd Digital Avionics System Conference 16 



Modified from A. Tribble, 23rd Digital Avionics System Conference 17 



Fault Tolerance – Relies on Redundancy 

  Triple Modular Redundancy (TMR) 

  Hardware Redundancy 
  Software Redundancy 
  Information Redundancy 
  Temporal (Time) Redundancy  

Diversity: Each of these blocks could be 
designed by a different design team 
using different techniques. 

What if the error is in 
the voting unit? 
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Multi-stage TMR 

Problem with voters: 
•   Module outputs may be come valid at slightly different times 

•   Differences in hardware paths 
•   Differences in sensor locations 
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Detecting Faults 

  For some applications, this might be. OK. 
  But, how do we detect a fault? 
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Detecting Faults 

1.  Functionality Checks: 
  Periodically execute code and check results 
  For example, write and read from a RAM 

2.  Consistency Checking: 
  Example: Range checking 

3.  Signal Comparison: 
  In some systems, you can compare signals at various 

points within a module  

4.  Information Redundancy: 
  Checksums, parity checking 
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Detecting Faults 
5.  Instruction Monitoring: 

  If the processor fetches an illegal instruction, something is 
probably wrong 

6.  Loop-back Testing: 
  Useful for testing communication channels.  Make sure what is 

received is the same as what is sent 

7.  Bus Monitoring: 
  Watch the bus and make sure that the program accesses 

memory within an allowable range 

8.  Power Supply Monitoring: 
  Possibly a dead system will draw less power 
  Also, the power supply may fail: this would cause major system 

failure.  There might be a warning you could watch for 
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Detecting Faults 
  9.  Watchdog Timers: 

  Detect the crash of a microprocessor by arranging a timer 
such that it will cause a reset (or error condition) if it is 
allowed to time-out 

  While the processor is operating normally, it periodically 
loads a value into this register 

  Problem: Time delay until fault  
      is detected 
  Problem: It is conceivable that  
     the system could crash in such  
     a way that the timer is still loaded  
     with a value, or it is possible that  
     the watchdog timer fails 
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Standby Spares 
  When an error is detected, switch in a spare: 

  Hot Standby: during normal operation, run the spare in parallel 
with the active unit.  Allows for a fast transfer of control with 
minimum of delay 
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N-Modular Redundancy with Spares 

Normal Operation: 
Use first N modules 

25 



N-Modular Redundancy with Spares 

  Normal 
Operation: Use 
first N modules 

  When one 
module fails, 
can switch in 
one of the 
spares.   

  Note: we still 
are protected 
from faults 
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Software Fault-Tolerant Techniques 

  Main difference between S/W and H/W fault tolerance 
schemes: 
  Simply replicating code and executing it 3 times doesn’t help 
  If there is a bug in the code, it will happen each time 

  Thus, with software, it really only makes sense if you 
have different implementations of the module 

  N-Versions programming: have N different versions of 
the software, and execute all N versions 
  Significant Run-time overhead 
  Development time/cost overhead 
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Recovery Blocks 

primary module 
acceptance test 
if (acceptance test failed) { 

 secondary module 
 acceptance test 
 if (acceptance test failed)  give up 

} 

Problem: primary module might 
have changed the state of the system 
need to checkpoint at the start so 
we can “roll back” system state 



Data Errors 

  Even if the hardware and software is fine, data can be 
corrupted: 

  One mechanism: Single-Event Upset faults 
  Radiation continuously strikes earth 
  It is possible that a bit can be flipped 

  Flipping a bit can cause memory errors, or if you are 
using reconfigurable logic, it can even cause circuit/
processor errors 
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Does it really happen? 
  Documented strikes in large servers found in 

error logs 
  Normand, “Single Event Upset at Ground Level,” IEEE 

Transactions on Nuclear Science, Vol. 43, No. 6, 
December 1996.  

  Sun Microsystems, 2000 (R. Baumann, 
Workshop talk) 
  Cosmic ray strikes on L2 cache with defective error 

protection 
  caused Sun’s flagship servers to suddenly and 

mysteriously crash! 
  Companies affected 

  Bell, America Online, Ebay, & dozens of other 
corporations  

From: S. Mukherjee, Intel, HPCA 2005 30 



Strike Changes State of a Single Bit 

0 1 

From: S. Mukherjee, Intel, HPCA 2005 31 



Impact of Neutron Strike on a Si Device 

Secondary source of upsets: alpha particles from packaging 

Strikes release electron & 
hole pairs that can be 
absorbed by source & drain 
to alter the state of the 
device 

+ - + + + - - - 

source drain 

neutron strike 

From: S. Mukherjee, Intel, HPCA 2005 32 



Cosmic Rays Come From Deep Space 

Earth’s Surface 
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 Neutron flux is higher in higher altitudes 

From: S. Mukherjee, Intel, HPCA 2005 33 



Impact of Elevation 

Figure 8, Ziegler, et al., “IBM 
experiments in soft fails in 
computer electronics (1978 - 
1994),” IBM J. of R. & D., Vol. 
40, No. 1, Jan. 1996.  

3x - 5x increase in Denver at 5,000 feet 
100x increase in airplanes at 30,000+ feet 

From: S. Mukherjee, Intel, HPCA 2005 34 



Error Correction/Detection 
  Most memories have extra bits to detect when there has been 
  an error (and possibly correct) 

  Every time you read a word, the parity bit(s) are checked 
  If there is an error, and it can not be corrected, inform the processor 

via an interrupt  

  Note that it can affect your registers too, and registers often do 
not have any parity bits.    
  Any system will fail eventually 
  Quantified by “Mean Time Between Failure” (MTBF) 

  FPGAs have an extra problem: the configuration (the circuit  
implemented in the FPGA) is stored in memory bits 
  A neutron strike can change the circuit!   
  Is this a problem?  Some researchers are working on it, some say no 

big deal 
  Actel says it is an advantage of their Anti-fuse parts   
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Redundancy in Memory Arrays 
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Some Example Fault-Tolerant Systems 
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Example: Darlington Nuclear Power Plant 
  Two ways of shutting down 

reaction: 
  SDS1: Drop Neutron-absorbing 

shut-off rods into the reaction 
  SDS2: Injects liquid Gadolinium 

Nitrate into the reaction 

  Both systems use separate 
sensors and separate software: 
  SDS1: 7000 lines of Fortran 
  SDS2: 13000 lines of Pascal 

  Written by two different teams 
(but managed by the same 
person) 
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Example: Space Shuttle 
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Space Shuttle Computer Systems 
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Space Shuttle Computer Systems 
  Four CPUs are configured in a N-Way Modular Redundancy 

scheme 
  Each CPU executes the same code 
  Hardware voting is done, but each processor also compares its results 

to those from its neighbour 
  If there is a disagreement, voting is used to remove the offending 

computer   

  When one computer fails, there are three left 
  Use TMR (Triple Modular Redundancy) techniques 

  When another computer fails, there are two left: 
  Two remaining computers compare their results to detect failure 

  When another computer fails, there is one left: 
  Inform the crew, try to detect what the problem is and maybe fix it? 
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Space Shuttle Computer Systems 

  The fifth computer is normally used for non-critical 
functions such as communications. 

  In an emergency, it can take over critical operations 
  It contains flight control software written by a different 

contractor 
  Provides some software diversity 
  However, all processors are of the same type (potential 

problem) 
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    

Modern Passenger Jet Processor Architecture 
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Mariner 1 Venus Probe 
  Hardware/Software problems go way back… 

  Mars 1 Venus Probe: Launched in July of 1962: “The first 
American attempt to send a probe to Venus. Guidance 
instructions from the ground stopped reaching the rocket 
due to a problem with its antenna, so the onboard computer 
took control. However, a bug in the guidance software 
caused the rocket to veer off course and it was destroyed by 
the range safety officer.” 

  The problem was traced to the following line of Fortran code: 
  DO 5 K = 1. 3 

  The period should have been a comma. 

  An $18.5 million space exploration vehicle was lost 
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Learning from Other Fields… 

Modified from Patterson, 2004 

In the 1800’s, ¼ of iron truss 
railroad bridges failed! 

Today: safety is now part of the 
Civil Engineering culture 
  - margin of safety: 3x-6x vs. 
    calculated load 
  - What is the EE/CE margin 
    of safety? 

What will people in the future 
think of our computers? 
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Estimating system reliability 
Definitions and basic mathematical modeling 

EECE 494 – Design of Real-Time Systems 



Overview 
  Basic concepts 
  Reliability expressions 
  Mean time to failure (& mean time between failures) 
  Availability 
  Maintainability 
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Improving reliability via redundancy 
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Triple modular redundancy 



Improving reliability via redundancy 
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Space shuttle systems 



Definitions 

  Reliability: The probability that the given system will 
perform its required function under specified conditions 
for a specified period of time.  

  MTBF (Mean Time Between Failures): Average time a 
system will run between failures. The MTBF is usually 
expressed in hours. This metric is more useful to the user 
than the reliability measure.  
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Increased system reliability 

•  Worst case design 
•  Use high quality components 
•  Strict quality control procedures 

•  Redundancy 
•  Typically employed 
•  Less expensive 
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Reliability expressions 
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  Exponential failure law 
  Mostly applicable to hardware components 
  The reliability of a system is modeled as 

  where λ is the failure rate expressed as the number of failure 
per time unit (the time unit could be hours, days, …). 

  When the product λt is small, the expression can be 
approximated as 

  

€ 

R(t) = e−λt

  

€ 

R(t) = 1− λt



Mean time between failures 
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  MTBF is the average time a system will run between 
failures. 

  The mean time between failures is the reciprocal of the 
failure rate. 

  If λ is the number of failures per hour, the MTBF is 
expressed in hours. 

  If, after repair, a system behaves like it was new, there 
is no difference between MTTF and MTBF. Else there 
may be some difference. 

MTBF =
� ∞

0
R(t)dt =

� ∞

0
e−λtdt =

1
λ



Example 
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  A system has 4000 components, each with a failure 
rate of 0.02% per 1000 hours. Calculate λ and the 
MTBF. 

λ =
0.02
100

× 1
1000

× 4000 = 8× 10−4 failures per hour

MTBF =
1

8× 10−4
= 1250 hours



Relation between MTBF and reliability 
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  When λt is small: R(t) = 1-λt = 1-(t/MTBF) 
  MTBF = t/(1-R(t)) 



Another example 
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  A first generation computing system contains 10,000 components, each 
with λ=0.5% per 1000 hours. What is the period of 99% reliability? (All 
components have to function correctly.)  

N = 10, 000 (the number of components)

λ = N × 0.5%
1000

= 5× 10−2 per hour

MTBF =
1
λ

= 20 hours

Using the approximation:

MTBF =
t

1−R(t))
=

t

1− 0.99
= 100t

t0.99 = 0.2 hours = 12 minutes

t0.99 



Reliability of different system configurations 
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  Series configuration 

R R R R 

Overall reliability, Ro = R x R x … x R = Rn 



Reliability of different system configurations 
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  Parallel configuration 
R 

R 

R 

R 

Overall reliability, Ro = 1-(probability of all failures) = 1-(1-R)n 



Reliability of different system configurations 
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  Hybrid configuration 
R 

R 

R 

R 

R R R 



Reliability of different system configurations 
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  Triple modular redundancy 

R 

R 

R 

VOTER 

Ro =
��

3
2

�
×R2 × (1−R)

�
+ R3

Assuming an always reliable voter, and 
assuming at least two modules have to 
function correctly at any time. 



Maintainability 
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  Maintainability of a system is the probability of isolating 
and repairing a fault in the system within a given time 
duration. 

  M(t) = 1-e-µt where µ is the repair rate and t is the 
permissible time for the  maintenance action.   

  M(t) is the probability that the system has been 
repaired at time t. 

  µ = 1/MTTR 
  MTTR is the mean time to repair 



Availability 
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  Availability of a system is the probability that the system 
will be functioning according to expectations at any time 
during its scheduled working period. 

  Availability = (Uptime)/(Operation Time) = (Uptime)/(Uptime+Downtime) 

  Downtime = (number of failures) x MTTR 
  Downtime = (uptime) x λ x MTTR 

  Availability = (Uptime)/(uptime + ((uptime) x λ x MTTR))  = 1/(1+ (λ x MTTR)) 
  Availability = MTBF/(MTBF+MTTR) 



An exercise 
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  You have five modules of the same type to design a fault-tolerant 
system. Each module has a failure rate λm. You have several possibilities 
for building redundancy. You can use  a 5-input majority voter (with 
failure rate λ5), a 3-input majority voter (λ3), a 2-to-1 selection circuit (λ2s), 
and a 2-input comparator (λ2c). Assume that 
  λ5 = 2λ3   
  λ3 = 2λ2s   
  λ2s = λ2c 

  What would be the best configuration to connect the modules?  
  You may make reasonable assumptions to ease calculations.  



Software systems 
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  How do we improve reliability? 
  Apart from N-versions programming and recovery 

blocks… 

  Better operating systems support 
  Stricter programming language primitives 
  Rigorous engineering practice 
  Formal verification of correctness 



Redundancy… but at what cost? 
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  Discussion: What is an important factor affecting most 
engineering decisions that has been excluded in 
reliability estimation?  How would you account for the 
impact of this factor? 

  The price of redundancy. If we had a finite budget, is it 
better to improve the reliability of a component or rely 
on redundant (and less reliable) versions of that 
component? 



Summary 
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  Building a reliable system involves integrating several 
redundant components.  

  In this lecture we discussed:  
  Reliability and failure rates;  
  MTTF and MTBF;  
  Maintainability;  
  Availability.  

  We also analyzed the reliability of different configurations.  
  Parallel, Serial, Hybrid, TMR.  


