
Reliability and safety in real-time systems

Examples and basic principles

Overview

  Real-Time Systems need to be reliable!

  In this slide set, we will talk about some of
the techniques to make fault-tolerant
systems (this is a pre-requisite to making a
safe system).

  Rather than focus on the large amount of
theory in this area, we’ll emphasize a few
examples:
  Therac-25
  CANDU Reactors
  Space Shuttle
  Modern Passenger Jets

2

What should you learn?
  What is the difference between reliability, security and

safety?
  What are the steps from the time an error occurs to

when a system fails?
  What are some of the causes of errors?
  What are some of the approaches to fault tolerance?

  What are the differences between hardware and software
schemes?

3

Mercedes-Benz recalled 1 in 3 of the cars it produced in the past 4 years to fix
electronic problems…

Financial Times: March 31, 2005

…Final quarter of last year, Mercedes’s profits dropped 97%...

… sharp rise in breakdowns was due to the failure of the complex electronics in
its cars…

…it is extremely rare to recall more cars than a company builds in a year.

4

Motivating example: Therac-25

  Medical linear accelerator
  Used to treat tumors with either:

  Electron beams for shallow tissue
  X-Ray beams for deep tissue

  Eleven Therac-25s were installed
  Six in Canada
  Five in the United States

  Developed by Atomic Energy of Canada Limited (AECL).

5

6

Therac-25
  Could deliver either electron therapy or X-ray therapy

7

Counterweight

Field Light Mirror

Beam Flattener (X-
ray Mode)

Scan Magnet
(Electron Mode)

Turntable

8

  Six patients were delivered severe
overdoses of radiation between 1985
and 1987.
  Four of these patients died.

  Why?
  The turntable was in the wrong position.
  Patients were receiving x-rays without

beam-scattering.

9

Therac-25
  How could this happen?

  Race conditions in the software
  Multiple threads did not lock variables properly

  Overflow error.
  The turntable position was not checked every 256th time a certain

variable was incremented.

  No hardware safety interlocks.
  User interface errors, and wrong information on console.
  Non-descriptive error messages.

  “Malfunction 54”
  “H-tilt”

  Too easy to just hit “P” (Proceed)

10

For details on this, there is a very
complete article linked to the
course web site.

11

  Security: A measure of confidence that
the system can resist attempts to
modify its behaviour.

  Reliability: A measure of confidence
that the system produces accurate and
consistent results.

  Safety: A measure of confidence that
the system will not cause accidents.

  Security and Reliability are necessary,
but not sufficient conditions of safety.

Some definitions

12

Note that safety and reliability can be in conflict.
“The safest plane is one that never leaves the

ground”.

Good engineering always involves a tradeoff
between safety and reliability.

13

What should we be worried about?
  Computers are composed of hardware, software, and

data

  The software defines the operations
  The hardware performs the operations
  The data records the results of the operations

  We have to worry about all three of these

14

Hardware Software Data

Cause of
Failure

Deficiencies in design,
production or
maintenance

Design (logic) errors Transient Events

Occurrences Will eventually fail May never fail May never fail

Failure Rates Can be predicted in
theory from physical
principles

Can not be predicted
from physical
principles

Some upset rates can
be predicted from test

Redundancy Will improve reliability,
but may be susceptible
to common cause
failures

Will not improve
reliability, since this
will only replicate
same failure

May improve reliability

Diversity Will improve reliability,
should be less
susceptible to common
cause failures

Will improve reliability
since it minimizes
possibility of same
error occurring in
separate modules

Will improve reliability
since it minimizes
possibility of same
error occurring in
separate modules

Modified from A. Tribble, 23rd Digital Avionics System Conference 15

Hardware Software Data

Environmental
Factors

Dependant on
temperature,
humidity, stress, etc.

Dependent on internal
environment of
computer (memory,
clock speed, etc.)

Dependent on both
external (radiation,
EMI, etc.) and internal
environment (memory,
clock speed, etc.)

Time
Dependence

Is time dependent.
Failures can be
increasing, constant
or decreasing

Not time dependent.
Failures occur when
path that contains
error is executed

Is time dependent.
Failures can be
increasing, constant or
decreasing

Wear-Out Responsible for some
failures. May be
preceded by a
warning.

Not responsible for
any failures

Not responsible for
any failures

Preventative
Maintenance

Can improve
reliability

Will not improve
reliability, and may
actually worsen it

Will not improve
reliability

Modified from A. Tribble, 23rd Digital Avionics System Conference 16

Modified from A. Tribble, 23rd Digital Avionics System Conference 17

Fault Tolerance – Relies on Redundancy

  Triple Modular Redundancy (TMR)

  Hardware Redundancy
  Software Redundancy
  Information Redundancy
  Temporal (Time) Redundancy

Diversity: Each of these blocks could be
designed by a different design team
using different techniques.

What if the error is in
the voting unit?

18

Multi-stage TMR

Problem with voters:
•  Module outputs may be come valid at slightly different times

•  Differences in hardware paths
•  Differences in sensor locations

19

Detecting Faults

  For some applications, this might be. OK.
  But, how do we detect a fault?

20

Detecting Faults

1.  Functionality Checks:
  Periodically execute code and check results
  For example, write and read from a RAM

2.  Consistency Checking:
  Example: Range checking

3.  Signal Comparison:
  In some systems, you can compare signals at various

points within a module

4.  Information Redundancy:
  Checksums, parity checking

21

Detecting Faults
5.  Instruction Monitoring:

  If the processor fetches an illegal instruction, something is
probably wrong

6.  Loop-back Testing:
  Useful for testing communication channels. Make sure what is

received is the same as what is sent

7.  Bus Monitoring:
  Watch the bus and make sure that the program accesses

memory within an allowable range

8.  Power Supply Monitoring:
  Possibly a dead system will draw less power
  Also, the power supply may fail: this would cause major system

failure. There might be a warning you could watch for

22

Detecting Faults
  9. Watchdog Timers:

  Detect the crash of a microprocessor by arranging a timer
such that it will cause a reset (or error condition) if it is
allowed to time-out

  While the processor is operating normally, it periodically
loads a value into this register

  Problem: Time delay until fault
 is detected
  Problem: It is conceivable that
 the system could crash in such
 a way that the timer is still loaded
 with a value, or it is possible that
 the watchdog timer fails

23

Standby Spares
  When an error is detected, switch in a spare:

  Hot Standby: during normal operation, run the spare in parallel
with the active unit. Allows for a fast transfer of control with
minimum of delay

24

N-Modular Redundancy with Spares

Normal Operation:
Use first N modules

25

N-Modular Redundancy with Spares

  Normal
Operation: Use
first N modules

  When one
module fails,
can switch in
one of the
spares.

  Note: we still
are protected
from faults

26

Software Fault-Tolerant Techniques

  Main difference between S/W and H/W fault tolerance
schemes:
  Simply replicating code and executing it 3 times doesn’t help
  If there is a bug in the code, it will happen each time

  Thus, with software, it really only makes sense if you
have different implementations of the module

  N-Versions programming: have N different versions of
the software, and execute all N versions
  Significant Run-time overhead
  Development time/cost overhead

27

Recovery Blocks

primary module
acceptance test
if (acceptance test failed) {

 secondary module
 acceptance test
 if (acceptance test failed) give up

}

Problem: primary module might
have changed the state of the system
need to checkpoint at the start so
we can “roll back” system state

Data Errors

  Even if the hardware and software is fine, data can be
corrupted:

  One mechanism: Single-Event Upset faults
  Radiation continuously strikes earth
  It is possible that a bit can be flipped

  Flipping a bit can cause memory errors, or if you are
using reconfigurable logic, it can even cause circuit/
processor errors

29

Does it really happen?
  Documented strikes in large servers found in

error logs
  Normand, “Single Event Upset at Ground Level,” IEEE

Transactions on Nuclear Science, Vol. 43, No. 6,
December 1996.

  Sun Microsystems, 2000 (R. Baumann,
Workshop talk)
  Cosmic ray strikes on L2 cache with defective error

protection
  caused Sun’s flagship servers to suddenly and

mysteriously crash!
  Companies affected

  Bell, America Online, Ebay, & dozens of other
corporations

From: S. Mukherjee, Intel, HPCA 2005 30

Strike Changes State of a Single Bit

0 1

From: S. Mukherjee, Intel, HPCA 2005 31

Impact of Neutron Strike on a Si Device

Secondary source of upsets: alpha particles from packaging

Strikes release electron &
hole pairs that can be
absorbed by source & drain
to alter the state of the
device

+ - + + + - - -

source drain

neutron strike

From: S. Mukherjee, Intel, HPCA 2005 32

Cosmic Rays Come From Deep Space

Earth’s Surface

p
n p

p

n

n

p

p

n

n

n

 Neutron flux is higher in higher altitudes

From: S. Mukherjee, Intel, HPCA 2005 33

Impact of Elevation

Figure 8, Ziegler, et al., “IBM
experiments in soft fails in
computer electronics (1978 -
1994),” IBM J. of R. & D., Vol.
40, No. 1, Jan. 1996.

3x - 5x increase in Denver at 5,000 feet
100x increase in airplanes at 30,000+ feet

From: S. Mukherjee, Intel, HPCA 2005 34

Error Correction/Detection
  Most memories have extra bits to detect when there has been
  an error (and possibly correct)

  Every time you read a word, the parity bit(s) are checked
  If there is an error, and it can not be corrected, inform the processor

via an interrupt

  Note that it can affect your registers too, and registers often do
not have any parity bits.
  Any system will fail eventually
  Quantified by “Mean Time Between Failure” (MTBF)

  FPGAs have an extra problem: the configuration (the circuit
implemented in the FPGA) is stored in memory bits
  A neutron strike can change the circuit!
  Is this a problem? Some researchers are working on it, some say no

big deal
  Actel says it is an advantage of their Anti-fuse parts

35

Redundancy in Memory Arrays

36

Some Example Fault-Tolerant Systems

37

Example: Darlington Nuclear Power Plant
  Two ways of shutting down

reaction:
  SDS1: Drop Neutron-absorbing

shut-off rods into the reaction
  SDS2: Injects liquid Gadolinium

Nitrate into the reaction

  Both systems use separate
sensors and separate software:
  SDS1: 7000 lines of Fortran
  SDS2: 13000 lines of Pascal

  Written by two different teams
(but managed by the same
person)

38

Example: Space Shuttle

39

Space Shuttle Computer Systems

40

Space Shuttle Computer Systems
  Four CPUs are configured in a N-Way Modular Redundancy

scheme
  Each CPU executes the same code
  Hardware voting is done, but each processor also compares its results

to those from its neighbour
  If there is a disagreement, voting is used to remove the offending

computer

  When one computer fails, there are three left
  Use TMR (Triple Modular Redundancy) techniques

  When another computer fails, there are two left:
  Two remaining computers compare their results to detect failure

  When another computer fails, there is one left:
  Inform the crew, try to detect what the problem is and maybe fix it?

41

Space Shuttle Computer Systems

  The fifth computer is normally used for non-critical
functions such as communications.

  In an emergency, it can take over critical operations
  It contains flight control software written by a different

contractor
  Provides some software diversity
  However, all processors are of the same type (potential

problem)

42

 

Modern Passenger Jet Processor Architecture

43

Mariner 1 Venus Probe
  Hardware/Software problems go way back…

  Mars 1 Venus Probe: Launched in July of 1962: “The first
American attempt to send a probe to Venus. Guidance
instructions from the ground stopped reaching the rocket
due to a problem with its antenna, so the onboard computer
took control. However, a bug in the guidance software
caused the rocket to veer off course and it was destroyed by
the range safety officer.”

  The problem was traced to the following line of Fortran code:
  DO 5 K = 1. 3

  The period should have been a comma.

  An $18.5 million space exploration vehicle was lost

44

Learning from Other Fields…

Modified from Patterson, 2004

In the 1800’s, ¼ of iron truss
railroad bridges failed!

Today: safety is now part of the
Civil Engineering culture
 - margin of safety: 3x-6x vs.
 calculated load
 - What is the EE/CE margin
 of safety?

What will people in the future
think of our computers?

45

Estimating system reliability
Definitions and basic mathematical modeling

EECE 494 – Design of Real-Time Systems

Overview
  Basic concepts
  Reliability expressions
  Mean time to failure (& mean time between failures)
  Availability
  Maintainability

47

Improving reliability via redundancy

48

Triple modular redundancy

Improving reliability via redundancy

49

Space shuttle systems

Definitions

  Reliability: The probability that the given system will
perform its required function under specified conditions
for a specified period of time.

  MTBF (Mean Time Between Failures): Average time a
system will run between failures. The MTBF is usually
expressed in hours. This metric is more useful to the user
than the reliability measure.

50

Increased system reliability

•  Worst case design
•  Use high quality components
•  Strict quality control procedures

•  Redundancy
•  Typically employed
•  Less expensive

51

Reliability expressions

52

  Exponential failure law
  Mostly applicable to hardware components
  The reliability of a system is modeled as

  where λ is the failure rate expressed as the number of failure
per time unit (the time unit could be hours, days, …).

  When the product λt is small, the expression can be
approximated as

€

R(t) = e−λt

€

R(t) = 1− λt

Mean time between failures

53

  MTBF is the average time a system will run between
failures.

  The mean time between failures is the reciprocal of the
failure rate.

  If λ is the number of failures per hour, the MTBF is
expressed in hours.

  If, after repair, a system behaves like it was new, there
is no difference between MTTF and MTBF. Else there
may be some difference.

MTBF =
� ∞

0
R(t)dt =

� ∞

0
e−λtdt =

1
λ

Example

54

  A system has 4000 components, each with a failure
rate of 0.02% per 1000 hours. Calculate λ and the
MTBF.

λ =
0.02
100

× 1
1000

× 4000 = 8× 10−4 failures per hour

MTBF =
1

8× 10−4
= 1250 hours

Relation between MTBF and reliability

55

  When λt is small: R(t) = 1-λt = 1-(t/MTBF)
  MTBF = t/(1-R(t))

Another example

56

  A first generation computing system contains 10,000 components, each
with λ=0.5% per 1000 hours. What is the period of 99% reliability? (All
components have to function correctly.)

N = 10, 000 (the number of components)

λ = N × 0.5%
1000

= 5× 10−2 per hour

MTBF =
1
λ

= 20 hours

Using the approximation:

MTBF =
t

1−R(t))
=

t

1− 0.99
= 100t

t0.99 = 0.2 hours = 12 minutes

t0.99

Reliability of different system configurations

57

  Series configuration

R R R R

Overall reliability, Ro = R x R x … x R = Rn

Reliability of different system configurations

58

  Parallel configuration
R

R

R

R

Overall reliability, Ro = 1-(probability of all failures) = 1-(1-R)n

Reliability of different system configurations

59

  Hybrid configuration
R

R

R

R

R R R

Reliability of different system configurations

60

  Triple modular redundancy

R

R

R

VOTER

Ro =
��

3
2

�
×R2 × (1−R)

�
+ R3

Assuming an always reliable voter, and
assuming at least two modules have to
function correctly at any time.

Maintainability

61

  Maintainability of a system is the probability of isolating
and repairing a fault in the system within a given time
duration.

  M(t) = 1-e-µt where µ is the repair rate and t is the
permissible time for the maintenance action.

  M(t) is the probability that the system has been
repaired at time t.

  µ = 1/MTTR
  MTTR is the mean time to repair

Availability

62

  Availability of a system is the probability that the system
will be functioning according to expectations at any time
during its scheduled working period.

  Availability = (Uptime)/(Operation Time) = (Uptime)/(Uptime+Downtime)

  Downtime = (number of failures) x MTTR
  Downtime = (uptime) x λ x MTTR

  Availability = (Uptime)/(uptime + ((uptime) x λ x MTTR)) = 1/(1+ (λ x MTTR))
  Availability = MTBF/(MTBF+MTTR)

An exercise

63

  You have five modules of the same type to design a fault-tolerant
system. Each module has a failure rate λm. You have several possibilities
for building redundancy. You can use a 5-input majority voter (with
failure rate λ5), a 3-input majority voter (λ3), a 2-to-1 selection circuit (λ2s),
and a 2-input comparator (λ2c). Assume that
  λ5 = 2λ3
  λ3 = 2λ2s
  λ2s = λ2c

  What would be the best configuration to connect the modules?
  You may make reasonable assumptions to ease calculations.

Software systems

64

  How do we improve reliability?
  Apart from N-versions programming and recovery

blocks…

  Better operating systems support
  Stricter programming language primitives
  Rigorous engineering practice
  Formal verification of correctness

Redundancy… but at what cost?

65

  Discussion: What is an important factor affecting most
engineering decisions that has been excluded in
reliability estimation? How would you account for the
impact of this factor?

  The price of redundancy. If we had a finite budget, is it
better to improve the reliability of a component or rely
on redundant (and less reliable) versions of that
component?

Summary

66

  Building a reliable system involves integrating several
redundant components.

  In this lecture we discussed:
  Reliability and failure rates;
  MTTF and MTBF;
  Maintainability;
  Availability.

  We also analyzed the reliability of different configurations.
  Parallel, Serial, Hybrid, TMR.

