
Platform Selection – Motivating Example
and Case Study

Example from Embedded System Design: A Unified Hardware/Software
Approach. Vahid & Givargis, 2000.

Overview
  All real systems contain both hardware and software! (no

such thing has a software-only system)

  We will talk about some platform choices for systems.
  So far we have assumed an abstract task model with timing

parameters.
  Where do those parameters come from? Can they be improved?

  What is the impact of hardware & software choices?

2 EECE 494: Real-Time Systems Design

Overview

  In this example, we will step through a simple system and
show how it can be partitioned among hardware and
software
  Four implementations, each with varying degrees of hardware

  Along the way, we will start to understand some of the
tradeoffs between implementing something in hardware and
implementing something in software.

  We’ll also talk about fixed-point vs. floating-point, an
important optimization that involves both hardware and
software.

3 EECE 494: Real-Time Systems Design

EECE 494: Real-Time Systems Design 4

 

What does a digital camera do?

  Capturing images, processing them, and storing them
in memory

  Uploading images to a PC

  We will focus on the first:
  When the shutter is pressed:

  Image captured
  Converted to digital form by CCD
  Compressed and archived

5 EECE 494: Real-Time Systems Design

Requirements

  Performance
  We want to process a picture in one second

  Slower would be annoying
  Faster not necessary for a low-end camera

  Size
  Must fit on a low-cost chip
  Let’s say 200,000 gates, including the processor

  Power and Energy
  We don’t want a fan
  We want the battery to last as long as possible

6 EECE 494: Real-Time Systems Design

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

When exposed to light, each
cell becomes electrically
charged. This charge can then
be converted to a 8-bit value
where 0 represents no
exposure while 255
represents very intense
exposure of that cell to light.

EECE 494: Real-Time Systems Design 7

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

Some of the columns are
covered with a black strip
of paint. The light-intensity
of these pixels is used for
zero-bias adjustments of
all the cells.

8 EECE 494: Real-Time Systems Design

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

The electromechanical
shutter is activated to expose
the cells to light for a brief
moment.

9 EECE 494: Real-Time Systems Design

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

The electronic circuitry, when
commanded, discharges the
cells, activates the
electromechanical shutter,
and then reads the 8-bit
charge value of each cell.
These values can be clocked
out of the CCD by external
logic through a standard
parallel bus interface.

10 EECE 494: Real-Time Systems Design

serial output
e.g., 011010...

yes no

CCD
input

Zero-bias adjust

DCT

Quantize

Archive in
memory

More
8×8

blocks?

Transmit serially

yes

no Done?

11 EECE 494: Real-Time Systems Design

Zero-Bias Error

  Manufacturing errors cause cells to measure slightly
above or slightly below the actual light intensity

  Error typically the same across columns, but different
across rows

  Some of the left-most columns are blocked by black
paint
  If you get anything but 0, you have a zero-bias error
  Each row is corrected by subtracting the average error in all

the blocked cells for that row

12 EECE 494: Real-Time Systems Design

Zero-Bias Error

After zero-bias adjustment

Covered cells

Before zero-bias adjustment

Zero-bias
adjustment

13 EECE 494: Real-Time Systems Design

CCD Pre-Processing Module
Performs zero-bias adjustment
CcdppCapture uses CcdCapture and CcdPopPixel to obtain image
Performs zero-bias adjustment after each row read in

void CcdppCapture(void) {

 CcdCapture();

 for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] = CcdPopPixel();

 }

 bias = (CcdPopPixel() + CcdPopPixel()) / 2;

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] -= bias;

 }

 }

}

14 EECE 494: Real-Time Systems Design

Compression

  JPEG Compression
  Based on discrete cosine transform (DCT)
  Image data is divided into 8x8 blocks of pixels
  On each block, do the following:

  DCT
  Quantization
  Huffman Encoding

15 EECE 494: Real-Time Systems Design

Discrete Cosine Transform (DCT)

  Transforms an 8x8 block of pixels into the frequency domain
  We produce a new 8x8 block of values such that

  Upper-left corner represent the “low frequency” components
  Lower-right corner represents the “high frequency” components
  We can reduce the precision of the higher frequency components and

retain reasonable image quality

16 EECE 494: Real-Time Systems Design

Discrete Cosine Transform (DCT)

  Equation to perform DCT:

  where

17 EECE 494: Real-Time Systems Design

Quantization

  Reduce bit precision. In our case, let’s reduce the
precision
  equally across all frequency values

After being decoded using DCT After quantization

Divide each cell’s
value by 8

18 EECE 494: Real-Time Systems Design

CODEC

void CodecDoFdct_for_one_block(int i, int j) {

 int x, y;

 for(x=0; x<8; x++)

 for(y=0; y<8; y++)

 obuffer[i*8+x][j*8+y] = FDCT(i, j, x, y, ibuffer);

}

void CodecDoFdct(void) {

 int i, j;

 for(i=0; i<NUM_ROW_BLOCKS; i++)

 for(j=0; j<NUM_COL_BLOCKS; j++)

 CodecDoFdct_for_one_block(i, j);

}

19 EECE 494: Real-Time Systems Design

Aside: Fixed-Point Number Representation

  Rather than computing the floating point cosine
function

  Notice that there are only 64 distinct values need for the
cosine

  So let’s pre-compute them

20 EECE 494: Real-Time Systems Design

  The result of the cosine is floating point
  It would be better if we could store the table in less memory

  Example: Suppose we want to represent -1 to 1 using 16
bits

  So if x is the floating point number, the fixed point number is
round (32768 * x)

Aside: Fixed-Point Number Representation

21 EECE 494: Real-Time Systems Design

Floating Point Fixed Point
0 0

0.25 8192
0.5 16384

0.999999… 32767
-0.5 -16384

CODEC

static const short COS_TABLE[8][8] = {

 { 32768, 32138, 30273, 27245, 23170, 18204, 12539, 6392 },
 { 32768, 27245, 12539, -6392, -23170, -32138, -30273, -18204 },

 { 32768, 18204, -12539, -32138, -23170, 6392, 30273, 27245 },
 { 32768, 6392, -30273, -18204, 23170, 27245, -12539, -32138 },
 { 32768, -6392, -30273, 18204, 23170, -27245, -12539, 32138 },

 { 32768, -18204, -12539, 32138, -23170, -6392, 30273, -27245 },
 { 32768, -27245, 12539, 6392, -23170, 32138, -30273, 18204 },

 { 32768, -32138, 30273, -27245, 23170, -18204, 12539, -6392 }
};

static double COS(int xy, int uv) {

 return(COS_TABLE[xy][uv] / 32768.0);

}

22 EECE 494: Real-Time Systems Design

CODEC

static int FDCT(int base_x, base_y, offset_x, offset_y, short **img) {

 r = 0;

 u = base_x*8 + offset_x;

 v = base_y*8 + offset_y;

 for(x=0; x<8; x++) {

 s[x] = img[x][0] * COS(0, v) + img[x][1] * COS(1, v) +

 img[x][2] * COS(2, v) + img[x][3] * COS(3, v) +

 img[x][4] * COS(4, v) + img[x][5] * COS(5, v) +

 img[x][6] * COS(6, v) + img[x][7] * COS(7, v);

 }

 for(x=0; x<8; x++) r += s[x] * COS(x, u);

 return (r * .25 * C(u) * C(v));

}

23 EECE 494: Real-Time Systems Design

Huffman Encoding
  Serialize 8 x 8 block of pixels

  Values are converted into single list using zigzag pattern

  Perform Huffman encoding (self-study)
  More frequently occurring pixels assigned short binary code
  Longer binary codes left for less frequently occurring pixels

24 EECE 494: Real-Time Systems Design

Archiving Images

Here’s a really simple memory map

The amount of memory required depends on
N and the compression ratio

25 EECE 494: Real-Time Systems Design

Uploading to the PC
  When connected to PC and upload command received

  Read images from memory
  Transmit serially using UART
  While transmitting

  Reset pointers, image-size variables and global memory pointer
accordingly

26 EECE 494: Real-Time Systems Design

serial output
e.g., 011010...

yes no

CCD
input

Zero-bias adjust

DCT

Quantize

Archive in
memory

More
8×8

blocks?

Transmit serially

yes

no Done?

EECE 494: Real-Time Systems Design 27

Implementing a simple digital camera

  We are going to talk about four potential
implementations
  Microcontroller Alone (everything in software)
  Microcontroller and CCDPP
  Microcontroller and CCDPP/Fixed-Point DCT
  Microcontroller and CCDPP/DCT

28 EECE 494: Real-Time Systems Design

Implementation 1: Microprocessor Alone

  Suppose we use an Intel 8051 Microcontroller
  Total IC Cost about $5
  Well below 200mW power
  We figure it will take 3 months to get the product done
  12 Mhz, 12 cycles per instruction

  one million instructions per sec
  Can we get the required performance?

  let’s say our grid is 64x64

29 EECE 494: Real-Time Systems Design

 

void CcdppCapture(void) {

 CcdCapture();

 for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] = CcdPopPixel();

 }

 bias = (CcdPopPixel() + CcdPopPixel()) / 2;

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] -= bias;

 }

 }

}

Nested loops, 64*(64+64) iterations.

If each iteration is 50 assembly language instructions,

 8192 * 50 instructions = 409,600 instructions per image

This is half our budget and we haven’t even done DCT or Huffman yet!
30 EECE 494: Real-Time Systems Design

Implementation 2: Microcontroller and CCDPP

  CCDPP function implemented on custom hardware unit
  Improves performance – less microcontroller cycles
  Increases engineering cost and time-to-market
  Easy to implement

  Simple datapath
  Few states in controller

  Simple UART easy to implement as custom hardware unit also
  EEPROM for program memory and RAM for data memory added as well

8051

UART CCDPP

RAM EEPROM

SOC

31 EECE 494: Real-Time Systems Design

Microcontroller
Synthesizable version of Intel 8051 available

–  Written in VHDL
–  Captured at register transfer level (RTL)

Fetches instruction from ROM
Decodes using Instruction Decoder
ALU executes arithmetic operations

–  Source and destination registers reside in RAM
Special data movement instructions used to load and store externally
Special program generates VHDL description of ROM from output of C compiler

To External Memory
Bus

Controller

4K ROM

128
RAM

Instruction
Decoder

ALU

Block diagram of Intel 8051 processor core

32 EECE 494: Real-Time Systems Design

UART
  UART invoked when 8051 executes

store instruction with UART’s enable
register as target address
  Memory-mapped communication

between 8051 and UART

  Start state transmits 0 indicating
start of byte transmission then
transitions to Data state

  Data state sends 8 bits serially then
transitions to Stop state

  Stop state transmits 1 indicating
transmission done then transitions
back to idle mode

invoked

I = 8

I < 8

Idle:
I = 0

Start:
Transmit

LOW

Data:
Transmit
data(I),
then I++

Stop:
Transmit

HIGH

33 EECE 494: Real-Time Systems Design

CCDPP

  Hardware implementation of zero-bias
operations

  Internal buffer, B, memory-mapped to
8051

  GetRow state reads in one row from
CCD to B
  66 bytes: 64 pixels + 2 blacked-out pixels

  ComputeBias state computes bias for
that row and stores in variable Bias

  FixBias state iterates over same row
subtracting Bias from each element

  NextRow transitions to GetRow for
repeat of process on next row or to Idle
state when all 64 rows completed

C =
64

C <
64

R = 64 C =
66

invoke
d

R < 64

C <
66 Idle:

R=0
C=0

GetRow:
B[R][C]

=Pxl
C=C+1

ComputeBias:
Bias=(B[R][11]
+ B[R][10]) / 2

C=0

NextRow:
R++
C=0

FixBias:
B[R][C]=B[R]

[C]-Bias

34 EECE 494: Real-Time Systems Design

Connecting SoC Components
  Memory-mapped

  All single-purpose processors and RAM are connected to 8051’s memory bus
  Read

  Processor places address on 16-bit address bus
  Asserts read control signal for 1 cycle
  Reads data from 8-bit data bus 1 cycle later
  Device (RAM or custom circuit) detects asserted read control signal
  Checks address
  Places and holds requested data on data bus for 1 cycle

  Write
  Processor places address and data on address and data bus
  Asserts write control signal for 1 clock cycle
  Device (RAM or custom circuit) detects asserted write control signal
  Checks address bus
  Reads and stores data from data bus

35 EECE 494: Real-Time Systems Design

Analysis

VHDL
simulator

VHDL VHDL VHDL

Execution time

Synthesis
tool

gates gates gates

Sum gates

Gate level
simulator

Power
equation

Chip area

Power

36 EECE 494: Real-Time Systems Design

Analysis

  Entire SOC tested on VHDL simulator
  Interprets VHDL descriptions and functionally simulates

execution of system
  Tests for correct functionality
  Measures clock cycles to process one image (performance)

  Gate-level description obtained through synthesis
  Synthesis tool like compiler for hardware
  Simulate gate-level models to obtain data for power analysis

  Number of times gates switch from 1 to 0 or 0 to 1
  Count number of gates for chip area

37 EECE 494: Real-Time Systems Design

Analysis of Implementation 2

  Total execution time for processing
one image: 9.1 seconds

  Power consumption: 0.033 watt

  Energy consumption: 0.30 joule
(9.1 s x 0.033 watt)

  Total chip area: 98,000 gates

38 EECE 494: Real-Time Systems Design

Implementation 3: Fixed-Point DCT

  Most of the execution time is spent in the DCT

  We could design custom hardware like we did for
CCDPP
  More complex, so more design effort

  Let’s see if we can speed up the DCT by modifying the
number representation (but still do it in software)

39 EECE 494: Real-Time Systems Design

DCT Floating Point Cost
  DCT uses ~260 floating-point operations per pixel

transformation
  4096 (64 x 64) pixels per image
  1 million floating-point operations per image

  No floating-point support with Intel 8051
  Compiler must emulate
  Generates procedures for each floating-point operation

  mult, add
  Each procedure uses tens of integer operations

  Thus, > 10 million integer operations per image
  Procedures increase code size
  Fixed-point arithmetic can improve on this

40 EECE 494: Real-Time Systems Design

Fixed-Point Arithmetic

  Integer used to represent a real number
  Some bits represent fraction, some bits represent whole

number

Integer Part = 2
There are 16 possible values (“codes”) of the
fractional part.

If we “quantize” the fractional value over
these 16 possible codes:

 0: encode with 0000

 1/16: encode with 0001

 …

 15/16: encode with 1111

So this fractional
part is 12/16 = 0.75

So the number is 2.75

41 EECE 494: Real-Time Systems Design

  Addition
  A good approximation is to simply add the fixed-point

representations

  Example: Suppose we want to add 3.14 and 2.71
  3.14 is represented as 00110010
  2.71 is represented as 00101011

  Add these two representations to get: 01011101
  This corresponds to 5.8125, which is kind of close to

5.85

Fixed-Point Arithmetic

42 EECE 494: Real-Time Systems Design

Fixed-Point Arithmetic

  Multiply
  Multiply the representations and shift right by the number of bits in

the fractional part
  Example: Suppose we want to multiply 3.14 and 2.71
  3.14 is represented as 00110010
  2.71 is represented as 00101011

  Multiply these two representations to get: 100001100110
  Shift right by 4 bits: 10000110
  This corresponds to 8.375, which is kind of close to 8.5094
  Moral: we can add and multiply easily. This is faster and

smaller than floating point.
 

43 EECE 494: Real-Time Systems Design

New CODEC
static const char code COS_TABLE[8][8] = {
 { 64, 62, 59, 53, 45, 35, 24, 12 },
 { 64, 53, 24, -12, -45, -62, -59, -35 },
 { 64, 35, -24, -62, -45, 12, 59, 53 },
 { 64, 12, -59, -35, 45, 53, -24, -62 },
 { 64, -12, -59, 35, 45, -53, -24, 62 },
 { 64, -35, -24, 62, -45, -12, 59, -53 },
 { 64, -53, 24, 12, -45, 62, -59, 35 },
 { 64, -62, 59, -53, 45, -35, 24, -12 }
};

static int FDCT(int base_x, base_y, offset_x, offset_y, short **img) {
 r = 0;
 u = base_x*8 + offset_x;
 v = base_y*8 + offset_y;
 for (x=0; x<8; x++) {
 s[x] = 0;
 for(j=0; j<8; j++)
 s[x] += (img[x][j] * COS_TABLE[j][v]) >> 6;
 }
 for(x=0; x<8; x++) r += (s[x] * COS_TABLE[x][u]) >> 6;
 return (short)((((r * (((16*C(u)) >> 6) *C(v)) >> 6)) >> 6) >> 6);
}

Analysis of Implementation 3

  Total execution time for processing one image:
  1.5 seconds

  Power consumption:
  0.033 watt (same as implementation 2)

  Energy consumption:
  0.050 joule (1.5 s x 0.033 watt)
  Battery life 6x longer!

  Total chip area:
  90,000 gates
 (8,000 fewer gates – less memory needed for code)

45 EECE 494: Real-Time Systems Design

Implementation 4: Implement the CODEC in H/W

  The CODEC block will be specially-designed hardware to
perform the DCT on one 8x8 block
  Still need software to control the whole thing

8051

UART CCDPP

RAM EEPROM

SOC CODEC

46 EECE 494: Real-Time Systems Design

CODEC Design

  Four memory mapped registers
  C_DATAI_REG: used to push 8x8 block into CODEC
  C_DATAO_REG: used to pop 8 x 8 block out of CODEC
  C_CMND_REG: used to command CODEC

  Writing 1 to this register invokes CODEC
  C_STAT_REG: indicates CODEC done and ready for next block

  Polled in software

  Direct translation of C code to VHDL for actual hardware
implementation.

  Fixed-point version used

47 EECE 494: Real-Time Systems Design

Analysis of Implementation 4

  Total execution time for processing one image
  0.099 seconds (well under 1 sec)

  Power consumption: 0.040 watt
  Increase over 2 and 3 because the chip has more hardware

  Energy consumption: 0.00040 joule (0.099 s x 0.040
watt)
  Battery life 12x longer than previous implementation!!

  Total chip area: 128,000 gates
  Significant increase over previous implementations

48 EECE 494: Real-Time Systems Design

Analysis of Implementation 4

  Total execution time for processing one image
  0.099 seconds (well under 1 sec)

  Power consumption: 0.040 watt
  Increase over 2 and 3 because the chip has more hardware

  Energy consumption: 0.00040 joule (0.099 s x 0.040
watt)
  Battery life 12x longer than previous implementation!!

  Total chip area: 128,000 gates
  Significant increase over previous implementations

49 EECE 494: Real-Time Systems Design

So, what do you tell your boss?

  Implementation 3
  Close in performance; Cheaper; Less time to build

  Implementation 4
  Great performance and energy consumption
  More expensive and may miss time-to-market window

  If DCT designed ourselves then increased engineering cost and time-to-market
  If existing DCT purchased then increased IC cost

  Which is better?

50 EECE 494: Real-Time Systems Design

Highlights

  We saw an example/case study that illustrates some of
the tradeoffs
  Hardware takes longer to design, but will be faster
  Sometimes you can optimize the software instead
  Always a tradeoff between performance, cost, and time

  What you should know
  Not all details equally important
  Understand how to make trade-offs
  Floating point vs. fixed point
  Other details will be provided for you to analyze (IC cost, etc.)

51 EECE 494: Real-Time Systems Design

