
Platform Selection – Motivating Example
and Case Study

Example from Embedded System Design: A Unified Hardware/Software
Approach. Vahid & Givargis, 2000.

Overview
  All real systems contain both hardware and software! (no

such thing has a software-only system)

  We will talk about some platform choices for systems.
  So far we have assumed an abstract task model with timing

parameters.
  Where do those parameters come from? Can they be improved?

  What is the impact of hardware & software choices?

2 EECE 494: Real-Time Systems Design

Overview

  In this example, we will step through a simple system and
show how it can be partitioned among hardware and
software
  Four implementations, each with varying degrees of hardware

  Along the way, we will start to understand some of the
tradeoffs between implementing something in hardware and
implementing something in software.

  We’ll also talk about fixed-point vs. floating-point, an
important optimization that involves both hardware and
software.

3 EECE 494: Real-Time Systems Design

EECE 494: Real-Time Systems Design 4

 

What does a digital camera do?

  Capturing images, processing them, and storing them
in memory

  Uploading images to a PC

  We will focus on the first:
  When the shutter is pressed:

  Image captured
  Converted to digital form by CCD
  Compressed and archived

5 EECE 494: Real-Time Systems Design

Requirements

  Performance
  We want to process a picture in one second

  Slower would be annoying
  Faster not necessary for a low-end camera

  Size
  Must fit on a low-cost chip
  Let’s say 200,000 gates, including the processor

  Power and Energy
  We don’t want a fan
  We want the battery to last as long as possible

6 EECE 494: Real-Time Systems Design

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

When exposed to light, each
cell becomes electrically
charged. This charge can then
be converted to a 8-bit value
where 0 represents no
exposure while 255
represents very intense
exposure of that cell to light.

EECE 494: Real-Time Systems Design 7

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

Some of the columns are
covered with a black strip
of paint. The light-intensity
of these pixels is used for
zero-bias adjustments of
all the cells.

8 EECE 494: Real-Time Systems Design

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

The electromechanical
shutter is activated to expose
the cells to light for a brief
moment.

9 EECE 494: Real-Time Systems Design

Lens area

Pixel columns

Covered columns

Circuitry

Shutter

Pi
xe

l r
ow

s

The electronic circuitry, when
commanded, discharges the
cells, activates the
electromechanical shutter,
and then reads the 8-bit
charge value of each cell.
These values can be clocked
out of the CCD by external
logic through a standard
parallel bus interface.

10 EECE 494: Real-Time Systems Design

serial output
e.g., 011010...

yes no

CCD
input

Zero-bias adjust

DCT

Quantize

Archive in
memory

More
8×8

blocks?

Transmit serially

yes

no Done?

11 EECE 494: Real-Time Systems Design

Zero-Bias Error

  Manufacturing errors cause cells to measure slightly
above or slightly below the actual light intensity

  Error typically the same across columns, but different
across rows

  Some of the left-most columns are blocked by black
paint
  If you get anything but 0, you have a zero-bias error
  Each row is corrected by subtracting the average error in all

the blocked cells for that row

12 EECE 494: Real-Time Systems Design

Zero-Bias Error

After zero-bias adjustment

Covered cells

Before zero-bias adjustment

Zero-bias
adjustment

13 EECE 494: Real-Time Systems Design

CCD Pre-Processing Module
Performs zero-bias adjustment
CcdppCapture uses CcdCapture and CcdPopPixel to obtain image
Performs zero-bias adjustment after each row read in

void CcdppCapture(void) {

 CcdCapture();

 for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] = CcdPopPixel();

 }

 bias = (CcdPopPixel() + CcdPopPixel()) / 2;

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] -= bias;

 }

 }

}

14 EECE 494: Real-Time Systems Design

Compression

  JPEG Compression
  Based on discrete cosine transform (DCT)
  Image data is divided into 8x8 blocks of pixels
  On each block, do the following:

  DCT
  Quantization
  Huffman Encoding

15 EECE 494: Real-Time Systems Design

Discrete Cosine Transform (DCT)

  Transforms an 8x8 block of pixels into the frequency domain
  We produce a new 8x8 block of values such that

  Upper-left corner represent the “low frequency” components
  Lower-right corner represents the “high frequency” components
  We can reduce the precision of the higher frequency components and

retain reasonable image quality

16 EECE 494: Real-Time Systems Design

Discrete Cosine Transform (DCT)

  Equation to perform DCT:

  where

17 EECE 494: Real-Time Systems Design

Quantization

  Reduce bit precision. In our case, let’s reduce the
precision
  equally across all frequency values

After being decoded using DCT After quantization

Divide each cell’s
value by 8

18 EECE 494: Real-Time Systems Design

CODEC

void CodecDoFdct_for_one_block(int i, int j) {

 int x, y;

 for(x=0; x<8; x++)

 for(y=0; y<8; y++)

 obuffer[i*8+x][j*8+y] = FDCT(i, j, x, y, ibuffer);

}

void CodecDoFdct(void) {

 int i, j;

 for(i=0; i<NUM_ROW_BLOCKS; i++)

 for(j=0; j<NUM_COL_BLOCKS; j++)

 CodecDoFdct_for_one_block(i, j);

}

19 EECE 494: Real-Time Systems Design

Aside: Fixed-Point Number Representation

  Rather than computing the floating point cosine
function

  Notice that there are only 64 distinct values need for the
cosine

  So let’s pre-compute them

20 EECE 494: Real-Time Systems Design

  The result of the cosine is floating point
  It would be better if we could store the table in less memory

  Example: Suppose we want to represent -1 to 1 using 16
bits

  So if x is the floating point number, the fixed point number is
round (32768 * x)

Aside: Fixed-Point Number Representation

21 EECE 494: Real-Time Systems Design

Floating Point Fixed Point
0 0

0.25 8192
0.5 16384

0.999999… 32767
-0.5 -16384

CODEC

static const short COS_TABLE[8][8] = {

 { 32768, 32138, 30273, 27245, 23170, 18204, 12539, 6392 },
 { 32768, 27245, 12539, -6392, -23170, -32138, -30273, -18204 },

 { 32768, 18204, -12539, -32138, -23170, 6392, 30273, 27245 },
 { 32768, 6392, -30273, -18204, 23170, 27245, -12539, -32138 },
 { 32768, -6392, -30273, 18204, 23170, -27245, -12539, 32138 },

 { 32768, -18204, -12539, 32138, -23170, -6392, 30273, -27245 },
 { 32768, -27245, 12539, 6392, -23170, 32138, -30273, 18204 },

 { 32768, -32138, 30273, -27245, 23170, -18204, 12539, -6392 }
};

static double COS(int xy, int uv) {

 return(COS_TABLE[xy][uv] / 32768.0);

}

22 EECE 494: Real-Time Systems Design

CODEC

static int FDCT(int base_x, base_y, offset_x, offset_y, short **img) {

 r = 0;

 u = base_x*8 + offset_x;

 v = base_y*8 + offset_y;

 for(x=0; x<8; x++) {

 s[x] = img[x][0] * COS(0, v) + img[x][1] * COS(1, v) +

 img[x][2] * COS(2, v) + img[x][3] * COS(3, v) +

 img[x][4] * COS(4, v) + img[x][5] * COS(5, v) +

 img[x][6] * COS(6, v) + img[x][7] * COS(7, v);

 }

 for(x=0; x<8; x++) r += s[x] * COS(x, u);

 return (r * .25 * C(u) * C(v));

}

23 EECE 494: Real-Time Systems Design

Huffman Encoding
  Serialize 8 x 8 block of pixels

  Values are converted into single list using zigzag pattern

  Perform Huffman encoding (self-study)
  More frequently occurring pixels assigned short binary code
  Longer binary codes left for less frequently occurring pixels

24 EECE 494: Real-Time Systems Design

Archiving Images

Here’s a really simple memory map

The amount of memory required depends on
N and the compression ratio

25 EECE 494: Real-Time Systems Design

Uploading to the PC
  When connected to PC and upload command received

  Read images from memory
  Transmit serially using UART
  While transmitting

  Reset pointers, image-size variables and global memory pointer
accordingly

26 EECE 494: Real-Time Systems Design

serial output
e.g., 011010...

yes no

CCD
input

Zero-bias adjust

DCT

Quantize

Archive in
memory

More
8×8

blocks?

Transmit serially

yes

no Done?

EECE 494: Real-Time Systems Design 27

Implementing a simple digital camera

  We are going to talk about four potential
implementations
  Microcontroller Alone (everything in software)
  Microcontroller and CCDPP
  Microcontroller and CCDPP/Fixed-Point DCT
  Microcontroller and CCDPP/DCT

28 EECE 494: Real-Time Systems Design

Implementation 1: Microprocessor Alone

  Suppose we use an Intel 8051 Microcontroller
  Total IC Cost about $5
  Well below 200mW power
  We figure it will take 3 months to get the product done
  12 Mhz, 12 cycles per instruction

  one million instructions per sec
  Can we get the required performance?

  let’s say our grid is 64x64

29 EECE 494: Real-Time Systems Design

 

void CcdppCapture(void) {

 CcdCapture();

 for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] = CcdPopPixel();

 }

 bias = (CcdPopPixel() + CcdPopPixel()) / 2;

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] -= bias;

 }

 }

}

Nested loops, 64*(64+64) iterations.

If each iteration is 50 assembly language instructions,

 8192 * 50 instructions = 409,600 instructions per image

This is half our budget and we haven’t even done DCT or Huffman yet!
30 EECE 494: Real-Time Systems Design

Implementation 2: Microcontroller and CCDPP

  CCDPP function implemented on custom hardware unit
  Improves performance – less microcontroller cycles
  Increases engineering cost and time-to-market
  Easy to implement

  Simple datapath
  Few states in controller

  Simple UART easy to implement as custom hardware unit also
  EEPROM for program memory and RAM for data memory added as well

8051

UART CCDPP

RAM EEPROM

SOC

31 EECE 494: Real-Time Systems Design

Microcontroller
Synthesizable version of Intel 8051 available

–  Written in VHDL
–  Captured at register transfer level (RTL)

Fetches instruction from ROM
Decodes using Instruction Decoder
ALU executes arithmetic operations

–  Source and destination registers reside in RAM
Special data movement instructions used to load and store externally
Special program generates VHDL description of ROM from output of C compiler

To External Memory
Bus

Controller

4K ROM

128
RAM

Instruction
Decoder

ALU

Block diagram of Intel 8051 processor core

32 EECE 494: Real-Time Systems Design

UART
  UART invoked when 8051 executes

store instruction with UART’s enable
register as target address
  Memory-mapped communication

between 8051 and UART

  Start state transmits 0 indicating
start of byte transmission then
transitions to Data state

  Data state sends 8 bits serially then
transitions to Stop state

  Stop state transmits 1 indicating
transmission done then transitions
back to idle mode

invoked

I = 8

I < 8

Idle:
I = 0

Start:
Transmit

LOW

Data:
Transmit
data(I),
then I++

Stop:
Transmit

HIGH

33 EECE 494: Real-Time Systems Design

CCDPP

  Hardware implementation of zero-bias
operations

  Internal buffer, B, memory-mapped to
8051

  GetRow state reads in one row from
CCD to B
  66 bytes: 64 pixels + 2 blacked-out pixels

  ComputeBias state computes bias for
that row and stores in variable Bias

  FixBias state iterates over same row
subtracting Bias from each element

  NextRow transitions to GetRow for
repeat of process on next row or to Idle
state when all 64 rows completed

C =
64

C <
64

R = 64 C =
66

invoke
d

R < 64

C <
66 Idle:

R=0
C=0

GetRow:
B[R][C]

=Pxl
C=C+1

ComputeBias:
Bias=(B[R][11]
+ B[R][10]) / 2

C=0

NextRow:
R++
C=0

FixBias:
B[R][C]=B[R]

[C]-Bias

34 EECE 494: Real-Time Systems Design

Connecting SoC Components
  Memory-mapped

  All single-purpose processors and RAM are connected to 8051’s memory bus
  Read

  Processor places address on 16-bit address bus
  Asserts read control signal for 1 cycle
  Reads data from 8-bit data bus 1 cycle later
  Device (RAM or custom circuit) detects asserted read control signal
  Checks address
  Places and holds requested data on data bus for 1 cycle

  Write
  Processor places address and data on address and data bus
  Asserts write control signal for 1 clock cycle
  Device (RAM or custom circuit) detects asserted write control signal
  Checks address bus
  Reads and stores data from data bus

35 EECE 494: Real-Time Systems Design

Analysis

VHDL
simulator

VHDL VHDL VHDL

Execution time

Synthesis
tool

gates gates gates

Sum gates

Gate level
simulator

Power
equation

Chip area

Power

36 EECE 494: Real-Time Systems Design

Analysis

  Entire SOC tested on VHDL simulator
  Interprets VHDL descriptions and functionally simulates

execution of system
  Tests for correct functionality
  Measures clock cycles to process one image (performance)

  Gate-level description obtained through synthesis
  Synthesis tool like compiler for hardware
  Simulate gate-level models to obtain data for power analysis

  Number of times gates switch from 1 to 0 or 0 to 1
  Count number of gates for chip area

37 EECE 494: Real-Time Systems Design

Analysis of Implementation 2

  Total execution time for processing
one image: 9.1 seconds

  Power consumption: 0.033 watt

  Energy consumption: 0.30 joule
(9.1 s x 0.033 watt)

  Total chip area: 98,000 gates

38 EECE 494: Real-Time Systems Design

Implementation 3: Fixed-Point DCT

  Most of the execution time is spent in the DCT

  We could design custom hardware like we did for
CCDPP
  More complex, so more design effort

  Let’s see if we can speed up the DCT by modifying the
number representation (but still do it in software)

39 EECE 494: Real-Time Systems Design

DCT Floating Point Cost
  DCT uses ~260 floating-point operations per pixel

transformation
  4096 (64 x 64) pixels per image
  1 million floating-point operations per image

  No floating-point support with Intel 8051
  Compiler must emulate
  Generates procedures for each floating-point operation

  mult, add
  Each procedure uses tens of integer operations

  Thus, > 10 million integer operations per image
  Procedures increase code size
  Fixed-point arithmetic can improve on this

40 EECE 494: Real-Time Systems Design

Fixed-Point Arithmetic

  Integer used to represent a real number
  Some bits represent fraction, some bits represent whole

number

Integer Part = 2
There are 16 possible values (“codes”) of the
fractional part.

If we “quantize” the fractional value over
these 16 possible codes:

 0: encode with 0000

 1/16: encode with 0001

 …

 15/16: encode with 1111

So this fractional
part is 12/16 = 0.75

So the number is 2.75

41 EECE 494: Real-Time Systems Design

  Addition
  A good approximation is to simply add the fixed-point

representations

  Example: Suppose we want to add 3.14 and 2.71
  3.14 is represented as 00110010
  2.71 is represented as 00101011

  Add these two representations to get: 01011101
  This corresponds to 5.8125, which is kind of close to

5.85

Fixed-Point Arithmetic

42 EECE 494: Real-Time Systems Design

Fixed-Point Arithmetic

  Multiply
  Multiply the representations and shift right by the number of bits in

the fractional part
  Example: Suppose we want to multiply 3.14 and 2.71
  3.14 is represented as 00110010
  2.71 is represented as 00101011

  Multiply these two representations to get: 100001100110
  Shift right by 4 bits: 10000110
  This corresponds to 8.375, which is kind of close to 8.5094
  Moral: we can add and multiply easily. This is faster and

smaller than floating point.
 

43 EECE 494: Real-Time Systems Design

New CODEC
static const char code COS_TABLE[8][8] = {
 { 64, 62, 59, 53, 45, 35, 24, 12 },
 { 64, 53, 24, -12, -45, -62, -59, -35 },
 { 64, 35, -24, -62, -45, 12, 59, 53 },
 { 64, 12, -59, -35, 45, 53, -24, -62 },
 { 64, -12, -59, 35, 45, -53, -24, 62 },
 { 64, -35, -24, 62, -45, -12, 59, -53 },
 { 64, -53, 24, 12, -45, 62, -59, 35 },
 { 64, -62, 59, -53, 45, -35, 24, -12 }
};

static int FDCT(int base_x, base_y, offset_x, offset_y, short **img) {
 r = 0;
 u = base_x*8 + offset_x;
 v = base_y*8 + offset_y;
 for (x=0; x<8; x++) {
 s[x] = 0;
 for(j=0; j<8; j++)
 s[x] += (img[x][j] * COS_TABLE[j][v]) >> 6;
 }
 for(x=0; x<8; x++) r += (s[x] * COS_TABLE[x][u]) >> 6;
 return (short)((((r * (((16*C(u)) >> 6) *C(v)) >> 6)) >> 6) >> 6);
}

Analysis of Implementation 3

  Total execution time for processing one image:
  1.5 seconds

  Power consumption:
  0.033 watt (same as implementation 2)

  Energy consumption:
  0.050 joule (1.5 s x 0.033 watt)
  Battery life 6x longer!

  Total chip area:
  90,000 gates
 (8,000 fewer gates – less memory needed for code)

45 EECE 494: Real-Time Systems Design

Implementation 4: Implement the CODEC in H/W

  The CODEC block will be specially-designed hardware to
perform the DCT on one 8x8 block
  Still need software to control the whole thing

8051

UART CCDPP

RAM EEPROM

SOC CODEC

46 EECE 494: Real-Time Systems Design

CODEC Design

  Four memory mapped registers
  C_DATAI_REG: used to push 8x8 block into CODEC
  C_DATAO_REG: used to pop 8 x 8 block out of CODEC
  C_CMND_REG: used to command CODEC

  Writing 1 to this register invokes CODEC
  C_STAT_REG: indicates CODEC done and ready for next block

  Polled in software

  Direct translation of C code to VHDL for actual hardware
implementation.

  Fixed-point version used

47 EECE 494: Real-Time Systems Design

Analysis of Implementation 4

  Total execution time for processing one image
  0.099 seconds (well under 1 sec)

  Power consumption: 0.040 watt
  Increase over 2 and 3 because the chip has more hardware

  Energy consumption: 0.00040 joule (0.099 s x 0.040
watt)
  Battery life 12x longer than previous implementation!!

  Total chip area: 128,000 gates
  Significant increase over previous implementations

48 EECE 494: Real-Time Systems Design

Analysis of Implementation 4

  Total execution time for processing one image
  0.099 seconds (well under 1 sec)

  Power consumption: 0.040 watt
  Increase over 2 and 3 because the chip has more hardware

  Energy consumption: 0.00040 joule (0.099 s x 0.040
watt)
  Battery life 12x longer than previous implementation!!

  Total chip area: 128,000 gates
  Significant increase over previous implementations

49 EECE 494: Real-Time Systems Design

So, what do you tell your boss?

  Implementation 3
  Close in performance; Cheaper; Less time to build

  Implementation 4
  Great performance and energy consumption
  More expensive and may miss time-to-market window

  If DCT designed ourselves then increased engineering cost and time-to-market
  If existing DCT purchased then increased IC cost

  Which is better?

50 EECE 494: Real-Time Systems Design

Highlights

  We saw an example/case study that illustrates some of
the tradeoffs
  Hardware takes longer to design, but will be faster
  Sometimes you can optimize the software instead
  Always a tradeoff between performance, cost, and time

  What you should know
  Not all details equally important
  Understand how to make trade-offs
  Floating point vs. fixed point
  Other details will be provided for you to analyze (IC cost, etc.)

51 EECE 494: Real-Time Systems Design

