
Worst-Case Execution Time Analysis

EECE 494
The University of British Columbia

Lecture Outline

•  How do we estimate the execution time of a
task?
– Specifically, WCET.
– Testing.
– Simulation.
– Program analysis.

Read the associated chapter: Execution Time Analysis for Embedded Real-Time
Systems, Chapter 35 of the Handbook of Real-Time and Embedded Systems.

2

CPUs and Software Performance Analysis

•  System performance cannot be determined
without choosing a CPU

•  Software execution times definitely don’t scale
across CPU architectures, perhaps not even
within a CPU family

•  Architectural features which influence program
performance:
–  pipelining
–  caching
–  bus bandwidth

3

Hierarchical Performance Modeling

•  We would like to have a hierarchy of
increasingly accurate performance models,
from system specification to assembly code.

•  Very little work in C-level performance
modeling---hard to separate the program
from the CPU.

•  Two types of questions:
– which variety of Brand X CPU do I use?
– should I use Brand X or Brand Y?

4

Caches and Code Speed
•  Worst-case:
–  tight-deadline device interrupts
– driver is not in cache
– multiple high-priority drivers knock each other

out of the cache
•  Cache miss costs from a few cycles on up;

the faster the CPU, the more costly is a miss
•  Worst-case execution time is much larger

than best-case, leading to extreme
overengineering.

5

Alternative Approaches to Performance
Analysis

•  Conservative analysis – performance always
within bounds.
– WCET gives bounds from analysis, limited

simulation.
•  Detailed analysis – more info on a particular

case but no bounds.
– Execution-based methods provide lots of details

but only for given input data.

6

Performance of HLLs

•  HLL: High-Level Language
•  We would like to bound or estimate program

performance from high-level code:
– simplifies identification of paths
– provides early performance estimates

•  Realistically, we need to know the execution
platform.

7

Paths and Performance

•  Branches of conditional
have different
execution times.

•  Loops:
–  Multiple iterations.
–  Varying number of

iterations.

F1()

F2()

i<N

if

Loop
start

t

f

Loop
body

t

f

8

Measurements of Interest

•  Execution time bounds: worst, best.
– Upper/lower bounds important in multitasking

systems.
•  Execution time of incomplete code.
– Must be able to handle time estimates for

pieces of code.
•  Bounds of varying quality:
– Loose bounds quickly.
– Tight bounds with more effort.

9

Early Work: Explicit Path Analysis

•  Shaw developed techniques to prove bounds
on the number of times through paths.

•  Park and Shaw developed techniques for
path analysis and for measurement of
execution times of HLL statements on a
68000.

10

Challenges and Approaches

•  Exponential number of paths.
– Limit program constructs.
– Add annotations.
–  Implicit path analysis.

•  Instruction times are not independent:
pipeline effects; cache effects.
– State-dependent instruction execution time.
– Simulation.

11

Abstract Program Flow Anlaysis

•  Bound set of feasible paths without
exhaustive simulation.
– May include some infeasible paths in the

feasible set.
•  Perform abstract interpretation of the

program to find feasible paths.
– Generate safe bounds on the values of

variables.

12

Bounding Loop Iterations

Four phases:
1.  Iteratively identify branches that affect the

number of iterations.
2.  Identify loop iteration on which loop index-

dependent branches change direction.
3.  Use step 2 to determine when step 1 branches

are reached.
4.  Calculate bounds on number of iterations.

13

Implicit Path Analysis

•  Schedl, Li/Malik—find path length without
explicitly finding path.

•  Formulate as constraint solving problem:
– Generate constraints that describe program,

annotations.
– Solve using constraint solver, ILP (depending on

types of constraints allowed).

•  IPET (Implicit Path Enumeration).

14

WCET and Optimizing Compilers

•  Optimizing compilers can radically change
program control flow.

•  Must analyze timing of the optimized code.
– Annotations must be transferred to the

optimized code.
– Must be able to perform the program

transformations on the optimizations.

15

Cache Analysis Extensions
•  Must segment program units around cache

lines.
•  Different execution times for in-cache and

out-of-cache.
•  Conservative assumption: use in-cache time

only if statement is known to be in cache.
•  Add constraints which model cache state

based on program flow.

16

Cache Analysis Model (Colin & Puaut)

•  Instruction block (iblock): a basic block
fragment that fits into a cache line.
– Decomposition of program into iblocks depends

on cache organization.

•  Determine paths on which iblocks result in
hits, misses.

17

Cache Interference Example

for (i=0; i<N; i++) {
 f1();
 f2();
 f3();

}

iblockA

iblockB

iblockC

iblockD

cache
iblockB iblockD

iblockB iblockA iblockC

18

Branch Prediction Bounding (Colin & Puaut)

•  Missed branch prediction causes pipeline bubble.
–  Branch predictor has finite capacity.
–  Predictor may make wrong prediction.

•  Keep track of branch history.
–  Memoryless predictors are a special case.

•  Determine what prediction the machine will make
to determine whether a bubble may be caused.
–  Known correct predictions cause no bubble.
–  Known incorrect predictions cause a bubble.
–  Indeterminate results are pessimistically presumed to

cause a bubble.

19

Data Caching

•  Data address may not be known at compile
time:
–  Pointers.
–  Stack variables.

•  Caching of stack variables is easier to
compute.
– Offset from stack pointer is known.
– Can compute cache block based upon sp offset.

20

Timing Through Simulation

•  Use a simulator to time a sequence of
instructions.
– Can simulate basic blocks with boundary

conditions for branches.

•  WCET tools often use custom simulators
designed for small pieces of code, call by
subroutine.

21

Behavioral Performance Analysis

•  Use program behavior to analyze performance.
•  Advantages:

–  Handles arbitrary program.
–  Captures realistic behavior.

•  Disadvantages:
–  Doesn’t guarantee worst-case/best-case behavior.

22

Methodology
•  Sources of a

behavior:
– Program execution

on platform.
– Simulated execution.

program data

execute

behavior

analysis
tool

results

23

Cycle-Accurate Simulator

•  Models the
microarchitecture.
–  Simulating one instruction

requires executing routines
for instruction decode, etc.

•  Models pipeline state.
–  Microarchitectural registers

are exposed to the simulator.

re
g

IR

PC

I-box

24

Sources of Timing Information

•  Data book tables:
–  Time of individual

instructions.
–  Penalties for various

hazards.

•  Microarchitecture:
–  Depends from the structure

of machine.
–  Derived from execution of

the instruction in the
microarchitecture.

25

Levels of Detail in Simulation

•  Instruction schedulers:
– Models availability of microarchitectural

resources.
– May not capture all interactions.

•  Cycle timers:
– Models full microarchitecture.
– Most accurate, requires exact model of the

microarchitecture.

26

Modular Simulators

•  Model instructions through a description file.
– Drives assembler, basic behavioral simulation.

•  Assemble a simulation program from code
modules.
– Can add your own code.

27

What To Learn

•  The need for timing analysis
•  Principles of execution time analysis
– By measurements and simulations
– Static analysis

•  What is flow analysis?
•  What is low-level analysis?
•  What is IPET?

The required reading supplements this lecture (and is quite an easy read).

28

