Worst-Case Execution Time Analysis

EECE 494
The University of British Columbia



Lecture Outline

e How do we estimate the execution time of a
task?

— Specifically, WCET.
— Testing.

— Simulation.

— Program analysis.

Read the associated chapter: Execution Time Analysis for Embedded Real-Time
Systems, Chapter 35 of the Handbook of Real-Time and Embedded Systems.



CPUs and Software Performance Analysis

e System performance cannot be determined
without choosing a CPU

e Software execution times definitely don’t scale
across CPU architectures, perhaps not even
within a CPU family

* Architectural features which influence program
performance:

— pipelining
— caching
— bus bandwidth



Hierarchical Performance Modeling

 We would like to have a hierarchy of
increasingly accurate performance models,
from system specification to assembly code.

* Very little work in C-level performance
modeling—hard to separate the program
from the CPU.

e Two types of questions:
— which variety of Brand X CPU do | use?
— should | use Brand X or Brand Y?



Caches and Code Speed

* Worst-case:
— tight-deadline device interrupts
— driver is not in cache
— multiple high-priority drivers knock each other
out of the cache

* Cache miss costs from a few cycles on up;
the faster the CPU, the more costly is a miss

* Worst-case execution time is much larger
than best-case, leading to extreme
overengineering.



Alternative Approaches to Performance
Analysis

* Conservative analysis - performance always
within bounds.

— WCET gives bounds from analysis, limited
simulation.
* Detailed analysis - more info on a particular
case but no bounds.

— Execution-based methods provide lots of details
but only for given input data.



Performance of HLLs

* HLL: High-Level Language

* We would like to bound or estimate program
performance from high-level code:
— simplifies identification of paths
— provides early performance estimates

* Realistically, we need to know the execution
platform.



Paths and Performance

e Branches of conditional
have different
execution times.

* Loops:
— Multiple iterations.

— Varying number of
iterations.




Measurements of Interest

 Execution time bounds: worst, best.

— Upper/lower bounds important in multitasking
systems.

* Execution time of incomplete code.

— Must be able to handle time estimates for
pieces of code.

 Bounds of varying quality:
— Loose bounds quickly.
— Tight bounds with more effort.



Early Work: Explicit Path Analysis

 Shaw developed techniques to prove bounds
on the number of times through paths.

 Park and Shaw developed techniques for
path analysis and for measurement of
execution times of HLL statements on a
68000.



Challenges and Approaches

* Exponential number of paths.
— Limit program constructs.
— Add annotations.
— Implicit path analysis.

* |Instruction times are not independent:
pipeline effects; cache effects.
— State-dependent instruction execution time.
— Simulation.



Abstract Program Flow Anlaysis

 Bound set of feasible paths without
exhaustive simulation.

— May include some infeasible paths in the
feasible set.
* Perform abstract interpretation of the
program to find feasible paths.

— Generate safe bounds on the values of
variables.



Bounding Loop Iterations

Four phases:

1.

Iteratively identify branches that affect the
number of iterations.

|dentify loop iteration on which loop index-
dependent branches change direction.

Use step 2 to determine when step 1 branches
are reached.

Calculate bounds on number of iterations.



Implicit Path Analysis

* Schedl, Li/Malik—find path length without
explicitly finding path.
* Formulate as constraint solving problem:

— Generate constraints that describe program,
annotations.

— Solve using constraint solver, ILP (depending on
types of constraints allowed).

* |IPET (Implicit Path Enumeration).



WCET and Optimizing Compilers

* Optimizing compilers can radically change
program control flow.

* Must analyze timing of the optimized code.

— Annotations must be transferred to the
optimized code.

— Must be able to perform the program
transformations on the optimizations.



Cache Analysis Extensions

Must segment program units around cache
lines.

Different execution times for in-cache and
out-of-cache.

Conservative assumption: use in-cache time
only if statement is known to be in cache.

Add constraints which model cache state
based on program flow.



Cache Analysis Model (Colin & Puaut)

* Instruction block (iblock): a basic block
fragment that fits into a cache line.

— Decomposition of program into iblocks depends
on cache organization.

 Determine paths on which iblocks result in
hits, misses.



Cache Interference Example

for (i=0; I<N; i++) {

f1();

f2();
f3();

}

).

) ‘x° iblockC
*‘ 0C iblockD
O

ckD

18



Branch Prediction Bounding (Colin & Puaut)

 Missed branch prediction causes pipeline bubble.
— Branch predictor has finite capacity.
— Predictor may make wrong prediction.

 Keep track of branch history.

— Memoryless predictors are a special case.
 Determine what prediction the machine will make
to determine whether a bubble may be caused.

— Known correct predictions cause no bubble.
— Known incorrect predictions cause a bubble.

— Indeterminate results are pessimistically presumed to
cause a bubble.



Data Caching

 Data address may not be known at compile
time:
— Pointers.
— Stack variables.

e Caching of stack variables is easier to
compute.
— Offset from stack pointer is known.
— Can compute cache block based upon sp offset.



Timing Through Simulation

 Use a simulator to time a sequence of
Instructions.
— Can simulate basic blocks with boundary
conditions for branches.

« WCET tools often use custom simulators
designed for small pieces of code, call by
subroutine.



Behavioral Performance Analysis

* Use program behavior to analyze performance.

* Advantages:
— Handles arbitrary program.
— Captures realistic behavior.

* Disadvantages:
— Doesn’t guarantee worst-case/best-case behavior.



Methodology

e Sources of a
behavior:

— Program execution
on platform.

program

— Simulated execution.

behavior

23



Cycle-Accurate Simulator

* Models the
microarchitecture.

— Simulating one instruction
requires executing routines
for instruction decode, etc.

 Models pipeline state.

— Microarchitectural registers
are exposed to the simulator.

=

24



Sources of Timing Information

* Data book tables: * Microarchitecture:
— Time of individual — Depends from the structure
instructions. of machine.
— Penalties for various — Derived from execution of
hazards. the instruction in the

microarchitecture.



Levels of Detail in Simulation

e |nstruction schedulers:

— Models availability of microarchitectural
resources.

— May not capture all interactions.

* Cycle timers:
— Models full microarchitecture.

— Most accurate, requires exact model of the
microarchitecture.



Modular Simulators

* Model instructions through a description file.
— Drives assembler, basic behavioral simulation.

* Assemble a simulation program from code
modules.

— Can add your own code.



What To Learn

* The need for timing analysis

* Principles of execution time analysis
— By measurements and simulations

— Static analysis
 What is flow analysis?

 What is low-level analysis?
* What is IPET?

The required reading supplements this lecture (and is quite an easy read).



