Periodic task scheduling

Static priority scheduling
Rate monotonic priority assignment
Derivation of the RM utilization bound



Impact of GRMS

* GRMS: Generalized Rate Monotonic Scheduling

* Cited in the Selected Accomplishment section of the National
Research Council’s report on A Broader Agenda for Computer

Science and Engineering in 1992.

* “Through the development of Rate Monotonic Scheduling [theory], we
now have a system that will allow [Space Station] Freedom's computers
to budget their time, to choose between a variety of tasks, and decide not
only which one to do first but how much time to spend in the
process.” [Deputy Administrator of NASA, Aaron Cohen]

* “The navigation payload software for the next block of Global Positioning
System upgrade recently completed testing. ... This design would have
been difficult or impossible prior to the development of rate monotonic
theory.” [L. Doyle, and J. Elzey, “Successful Use of Rate Monotonic

Theory on A Formidable Real-Time System”]



Review

* Terminology

e Definitions of tasks, task invocations, release/arrival time, absolute deadline,
relative deadline, period, start time, finish time, ...

* Preemptive versus non-preemptive scheduling
* Priority-based scheduling

e Static versus dynamic priorities

e Utilization (U) and schedulability

e Main problem: Find Bound for scheduling policy such that

e U< Bound -~ All deadlines met!

e Optimality of EDF scheduling

* Bound.,-=100%



A quick refresher
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The release time of the first job of a task is also known as the
phase of the task. The phase of Task 1 is O.



A quick refresher

Job 2 of Task 1 preempts Job 1 of Task 2 at time=2
because we are following the rate monotonic priority

Task 1 assignment: a static priority policy.
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Schedulability analysis of periodic tasks

* Main problem
* Given a set of periodic tasks, can they meet their deadlines?
* Depends on scheduling policy
* Solution approaches
e Utilization bounds (simplest)
e Exact analysis (NP-Hard)
* Heuristics
* Two most important scheduling policies
* Earliest deadline first (dynamic)

e Rate monotonic (static)
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Utilization bounds

* Intuitively,

*The lower the processor utilization, U, the easier itis
to meet deadlines.

*The higher the processor utilization, U, the more
difficult it is to meet deadlines.

*Question: Is there a threshold U, ., such that
*When U< U,,,,,deadlines are met

*When U> U, ., deadlines are missed



Example (Rate monotonic scheduling)
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Example (Rate monotonic scheduling)
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*Question: Is there a threshold U, ., such that
*When U < U, deadlines are met

*When U > U, .4,deadlines are missed

time

10



Example (Rate monotonic scheduling)
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Another example (Rate monotonic scheduling)

Task 1
P2 b= b B
1:
Task 2
p-s L[ — m |
C,=2.4 | | | | | |

0 1 2 3 4 5 6 timelfl’

0 6’90/7 02_1+24
94952 :

* Question: Is there a threshold U, .4 such that
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Another example (Rate monotonic scheduling)
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Visualizing schedulability
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* When U<, ., deadlines are met
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Visualizing schedulability
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*Modified question: Is there a threshold U, ., such that

*When U < U,,,,; deadlines are met

*When U > U,,,,,deadlines may or may not be missed



Visualizing schedulability
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*Modified question: Is there a threshold U, ., such that

*When U < U,,,,; deadlines are met

*When U > U,,,,,deadlines may or may not be missed
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Visualizing schedulability
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*Modified question: Is there a threshold U, ., such that
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*When U < U,,,,; deadlines are met

*When U > U,,,,,deadlines may or may not be missed
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Finding the utilization bound for RM scheduling

Utilization Find some task set parameter x such that
a] for X < xo, U(X) decreases as x increases,
b] for X > Xo, U(X) increases as X increases,

where U(x) is the utilization of the task set with parameter x.
(0]

All task sets here are schedulable
N I I I I I

*Modified question: Is there a threshold U, ., such that

*When U < U, deadlines are met

*When U > U,,,,,ydeadlines may or may not be missed



Finding the utilization bound for RM scheduling

e Consider the simplest case with two tasks

Find some task set parameter x

such that
Case (a): x<x, such that U(x) decreases as x increases

Case (b): x>x, such that U(x) increases as x increases
Thus U(x) is minimum when x=x,
Find U(x,) 19
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Finding the utilization bound for RM scheduling

e Consider the simplest case with two tasks
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Finding the utilization bound for RM scheduling

e Consider the simplest case with two tasks
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Finding the utilization bound for RM scheduling

e Consider the simplest case with two tasks
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Finding the utilization bound for RM scheduling

e Consider the simplest case with two tasks

e There are two sub-cases...
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Find some task set parameter x
such that
Case (a): x<x, such that U(x) decreases as x increases
Case (b): x>x, such that U(x) increases as x increases
Thus U(x) is minimum when x=x,
Find U(x,) 25



Finding the utilization bound for RM scheduling

e Consider the simplest case with two tasks
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Finding the utilization bound for RM scheduling

Find some task set paramete@
ch that

Case (a): x<x, such that U(x) decreases as x increases

Case (b): x>x, such that U(x) increases as xNncreases
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P Find U(x,)
@S Py — LFinl @>P2—L%JP1
1

I l C
P, 1C, i P, “'“
Task 1 fH—F—1—"F-1— | e T e N =
e e el C I
Task 2 : : ” -
P, P,
Co =Py, — (] (I_ J + 1) Co (P Cl)L
g R R Ex BN YR U = PlLPQ o [—— &J]
P, Py P | P, P, P2 Pl P2 Pl Pl



Finding the utilization bound for RM scheduling

The minimum utilization case
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Finding the utilization bound for RM scheduling

The minimum utilization case

P[P P\[P P
U=14+— (212 |Z2-122] -1
2 (P1 Lle) Py 5]

1
To minimize U, we must have %J —
1P >L1 P/P; — 2
1 (P/PL=1)(Py/Pi—2)
] Py /P
U P
Then d(PQ/Pl) Pl
Finally, U = 0.83
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Generalization for n tasks
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Generalization for n tasks
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Generalization for n tasks

i, = P,—P; )
CQ = P3—P2 >U:C1'CQ'CS
Cs = P;—Ps P, P, Py
/
dU _ 0o dU _ 0o dU _ 0.
d(Py/P) ’ d(Ps3/Ps) ’ d(Py/ Ps) T
We can then obtain Liu & Layland, 1973
P

2 —2l/n = U =n(2/" - 1)

Forlarge n: Jim U= lim n(2'/" —1) =In2 ~ 0.69
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Lecture summary

* Understanding utilization bounds
* The utilization bound for rate-monotonic scheduling

* For RM scheduling the bound decreases with the number of tasks,
approaching an asymptotic limit of 0.69

e Coming up: Why is RM priority assignment the optimal static priority
policy? Are there better schedulability tests?
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