
Periodic task scheduling

Optimality of rate monotonic scheduling (among static priority policies)
Utilization bound for EDF
Optimality of EDF (among dynamic priority policies)
Tick-driven scheduling (OS issues)

2

Lecture outline

Periodic task scheduling

Rate monotonic EDF

Bound Optimality Bound Optimality

3

Lecture outline

Periodic task scheduling

Rate monotonic EDF

Bound Optimality Bound Optimality

4

Lecture outline

Periodic task scheduling

Rate monotonic EDF

Bound Optimality Bound Optimality

5

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority (or static-priority)
scheduling policy for periodic tasks.

• Optimality (Trial #1):

6

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

• Optimality (Trial #1): If any other fixed-priority scheduling policy can
meet deadlines, so can RM.

7

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

• Optimality (Trial #1): If any other fixed-priority scheduling policy can
meet deadlines, so can RM

8

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

• Optimality (Trial #1): If any other fixed-priority scheduling policy can
meet deadlines, so can RM

9

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

• Optimality (Trial #1): If any other fixed-priority scheduling policy can
meet deadlines, so can RM

10

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

• Optimality (Trial #1): If any other fixed-priority scheduling policy can
meet deadlines, so can RM

11

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

• Optimality (Trial #2): If any other fixed-priority scheduling policy can
meet deadlines in the worst case scenario, so can RM.

• How do we prove it?

12

Rate monotonic scheduling

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

• Optimality (Trial #2): If any other fixed-priority scheduling policy can
meet deadlines in the worst case scenario, so can RM.

• How do we prove it?

• Consider the worst case scenario

• Show that if someone else can schedule then RM can

13

The worst-case scenario

• Q: When does a periodic task, T, experience the maximum delay?

• A: When it arrives together with all the higher-priority tasks (critical instance)

•  Idea for the proof

•  If some higher-priority task does not arrive together with T, aligning the
arrival times can only increase the completion time of T.

Critical instant theorem

14

Proof (Case 1)

Task 1

Task 2

Case 1: Higher priority task 1 is running when task 2 arrives.

15

Proof

Task 1

Task 2

Case 1: higher priority task 1 is running when task 2 arrives
  shifting task 1 right will increase completion time of 2

16

Proof

Task 1

Task 2

Case 1: higher priority task 1 is running when task 2 arrives
  shifting task 1 right will increase completion time of 2

Task 1

Task 2

17

Proof (Case 2)

Task 1

Task 2

Case 2: processor is idle when task 2 arrives

18

Proof (Case 2)

Task 1

Task 2

Case 2: processor is idle when task 2 arrives
  shifting task 1 left cannot decrease completion time of 2

19

Proof (Case 2)

Task 1

Task 2

Task 1

Task 2

Case 2: processor is idle when task 2 arrives
  shifting task 1 left cannot decrease completion time of task 2

20

Optimality of the RM policy

•  If any other fixed-priority policy can meet deadlines so can RM

Policy X meets deadlines?

21

Optimality of the RM policy

•  If any other policy can meet deadlines so can RM

Policy X meets deadlines?
  RM meets deadlines

YES

22

Lecture outline

Periodic task scheduling

Rate monotonic EDF

Bound Optimality Bound Optimality

23

Lecture outline

Periodic task scheduling

Rate monotonic EDF

Bound Optimality Bound Optimality

24

Utilization bound for EDF

• Why is it 100%?

• Consider a task set where:

•  Imagine a policy that reserves for each task i a fraction f
i
 of each clock

tick, where f
i
 = C

i
/P

i

Clock tick

25

•  Imagine a policy that reserves for each task i a fraction f
i
 of each time

unit, where f
i
 = C

i
/P

i

•  This policy meets all deadlines, because within each period P
i
 it reserves

for task i a total time

•  Time = fi Pi = (Ci / Pi) Pi = Ci (i.e., enough to finish)

Clock tick

Utilization bound for EDF

26

• Pick any two execution chunks that are not in EDF
order and swap them

Utilization bound for EDF

27

• Pick any two execution chunks that are not in EDF
order and swap them

• Still meets deadlines!

Utilization bound for EDF

28

• Pick any two execution chunks that are not in EDF order and swap
them

• Still meets deadlines!

• Repeat swap until all in EDF order

•   EDF meets deadlines

Utilization bound for EDF

29

Lecture outline

Periodic task scheduling

Rate monotonic EDF

Bound Optimality Bound Optimality

30

Lecture outline

Periodic task scheduling

Rate monotonic EDF

Bound Optimality Bound Optimality

31

Tick-based scheduling within an OS

•  A real-time library for periodic tasks on Linux or Windows

•  There is need to provide approximate real-time guarantees
on common operating systems (as opposed to specialized
real-time OSes)

•  A high-priority “real-time” thread pool is created and
maintained

•  A higher-priority scheduler is invoked periodically by timer-
ticks to check for periodic invocation times of real-time
threads. The scheduler resumes threads whose arrival times
have come.

•  Resumed threads execute one invocation then block.

•  Scheduling is preemptive

•  The scheduler can implement arbitrary scheduling policies
including EDF, RM, etc.

•  An admission controller is responsible for spawning new
periodic threads if the new task set can meet its deadlines.

OS Kernel

Time-driven
Scheduler

Clock

Real-time threads
Admission
Controller

Resume

Done

32

•  A real-time library for periodic tasks on Linux or Windows

•  There is need to provide approximate real-time guarantees on
common operating systems (as opposed to specialized real-
time OSes)

•  A high-priority “real-time” thread pool is created and
maintained

•  A higher-priority scheduler is invoked periodically by timer-ticks
to check for periodic invocation times of real-time threads.
The scheduler resumes threads whose arrival times have
come.

•  Resumed threads execute one invocation then block.

•  Scheduling is preemptive

•  The scheduler can implement arbitrary scheduling policies
including EDF, RM, etc.

•  An admission controller is responsible for spawning new
periodic threads if the new task set can meet its deadlines.

•  Scheduler implements wrappers for blocking primitives

OS Kernel

Time-driven
Scheduler

Clock

Real-time threads
Admission
Controller

Lock
Lib

Resume

Done

Block

Tick-based scheduling within an OS

33

The time-driven scheduler

•  /* N is the number of periodic tasks */

•  For i=1 to N

•  if (current_time = next_arrival_time of task i)

•  put task i in ready_queue

•  /* ready_queue is a priority queue that implements

•  the desired scheduling policy. */

•  Inspect top task from ready queue, call it j

•  If (a task is running and its priority is higher than priority of j) return

•  Else resume task j (and put the running task into the ready queue
if applicable); return

OS Kernel

Time-driven
Scheduler

Clock

Real-time threads
Admission
Controller

Lock
Lib

Resume

Done

Block

34

An example schedule

Time ticks

Scheduler

 Task 1
- Invocation times
- Actual Execution

 Task 2
- Invocation times
- Actual Execution

35

An example schedule

Time ticks

Scheduler

 Task 1
- Invocation times
- Actual Execution

 Task 2
- Invocation times
- Actual Execution

36

An example schedule

Time ticks

Scheduler

 Task 1
- Invocation times
- Actual Execution

 Task 2
- Invocation times
- Actual Execution

37

An example schedule

Time ticks

Scheduler

 Task 1
- Invocation times
- Actual Execution

 Task 2
- Invocation times
- Actual Execution

38

An example schedule

Time ticks

Scheduler

 Task 1
- Invocation times
- Actual Execution

 Task 2
- Invocation times
- Actual Execution

39

An example schedule

Time ticks

Scheduler

 Task 1
- Invocation times
- Actual Execution

 Task 2
- Invocation times
- Actual Execution

40

An example schedule

Time ticks

Scheduler

 Task 1
- Invocation times
- Actual Execution

 Task 2
- Invocation times
- Actual Execution

41

Admission controller

• Implements schedulability analysis

•  If U+Cnew/Pnew < Ubound admit task

• Must account for various practical overheads.
How?

• Examples of overhead:

•  How to account for the overhead of running the time-driven
scheduler on every time-tick?

•  How to account for the overhead of running the scheduler
after task termination?

• If new task admitted

• U = U + Cnew/Pnew

• Create a new thread

• Register it with the scheduler

OS Kernel

Time-driven
Scheduler

Clock

Real-time threads
Admission
Controller

Lock
Lib

Resume

Done

Block

42

Library with lock primitives

•  Lock (S) {

•  Check if semaphore S = locked

•  If locked

•  enqueue running tasks in semaphore queue

•  Else

•  let semaphore = locked

•  }

•  Unlock (S) {

•  If semaphore queue empty then

•  semaphore = unlocked

•  Else

•  Resume highest-priority waiting task

•  }

OS Kernel

Time-driven
Scheduler

Clock

Real-time threads
Admission
Controller

Lock
Lib

Resume

Done

Block

Problem: some threads may execute blocking OS calls (e.g., disk or network read/write
and block without calling your lock/unlock!)

