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Rate monotonic scheduling 

• Rate monotonic scheduling is the optimal fixed-priority (or static-priority) 
scheduling policy for periodic tasks. 

• Optimality (Trial #1): 
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Rate monotonic scheduling 

• Rate monotonic scheduling is the optimal fixed-priority scheduling policy 
for periodic tasks. 

• Optimality (Trial #2): If any other fixed-priority scheduling policy can 
meet deadlines in the worst case scenario, so can RM. 

• How do we prove it? 

• Consider the worst case scenario 

• Show that if someone else can schedule then RM can 
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The worst-case scenario 

• Q: When does a periodic task, T, experience the maximum delay? 

• A: When it arrives together with all the higher-priority tasks (critical instance) 

•  Idea for the proof 

•  If some higher-priority task does not arrive together with T, aligning the 
arrival times can only increase the completion time of T. 

Critical instant theorem 
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Proof (Case 1) 

Task 1 

Task 2 

Case 1: Higher priority task 1 is running when task 2 arrives. 
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Proof (Case 2) 

Task 1 

Task 2 

Case 2: processor is idle when task 2 arrives 
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Proof (Case 2) 

Task 1 

Task 2 

Case 2: processor is idle when task 2 arrives 
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Proof (Case 2) 

Task 1 

Task 2 

Task 1 

Task 2 

Case 2: processor is idle when task 2 arrives 
  shifting task 1 left cannot decrease completion time of task 2 
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Optimality of the RM policy 

•  If any other fixed-priority policy can meet deadlines so can RM 

Policy X meets deadlines?  
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Optimality of the RM policy 

•  If any other policy can meet deadlines so can RM 

Policy X meets deadlines? 
  RM meets deadlines  

YES 
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Utilization bound for EDF 

• Why is it 100%? 

• Consider a task set where: 

•  Imagine a policy that reserves for each task i a fraction f
i
 of each clock 

tick, where f
i
 = C

i 
/P

i
  

Clock tick 
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•  Imagine a policy that reserves for each task i a fraction f
i
 of each time 

unit, where f
i
 = C

i 
/P

i
  

•  This policy meets all deadlines, because within each period P
i
 it reserves 

for task i a total time 

•  Time = fi Pi = (Ci / Pi) Pi = Ci  (i.e., enough to finish) 

Clock tick 

Utilization bound for EDF 
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• Pick any two execution chunks that are not in EDF 
order and swap them 

Utilization bound for EDF 
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• Pick any two execution chunks that are not in EDF order and swap 
them 

• Still meets deadlines! 

• Repeat swap until all in EDF order 

•   EDF meets deadlines 

Utilization bound for EDF 
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Tick-based scheduling within an OS 

•  A real-time library for periodic tasks on Linux or Windows 

•  There is need to provide approximate real-time guarantees 
on common operating systems (as opposed to specialized 
real-time OSes)  

•  A high-priority “real-time” thread pool is created and 
maintained  

•  A higher-priority scheduler is invoked periodically by timer-
ticks to check for periodic invocation times of real-time 
threads. The scheduler resumes threads whose arrival times 
have come.  

•  Resumed threads execute one invocation then block. 

•  Scheduling is preemptive 

•  The scheduler can implement arbitrary scheduling policies 
including EDF, RM, etc.  

•  An admission controller is responsible for spawning new 
periodic threads if the new task set can meet its deadlines. 

OS Kernel 

Time-driven  
Scheduler 

Clock 

Real-time threads 
Admission 
Controller 

Resume 

Done 
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•  A real-time library for periodic tasks on Linux or Windows 

•  There is need to provide approximate real-time guarantees on 
common operating systems (as opposed to specialized real-
time OSes)  

•  A high-priority “real-time” thread pool is created and 
maintained  

•  A higher-priority scheduler is invoked periodically by timer-ticks 
to check for periodic invocation times of real-time threads. 
The scheduler resumes threads whose arrival times have 
come.  

•  Resumed threads execute one invocation then block. 

•  Scheduling is preemptive 

•  The scheduler can implement arbitrary scheduling policies 
including EDF, RM, etc.  

•  An admission controller is responsible for spawning new 
periodic threads if the new task set can meet its deadlines. 

•  Scheduler implements wrappers for blocking primitives 

OS Kernel 

Time-driven  
Scheduler 

Clock 

Real-time threads 
Admission 
Controller 

Lock 
Lib 

Resume 

Done 

Block 

Tick-based scheduling within an OS 
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The time-driven scheduler 

•  /* N is the number of periodic tasks */ 

•  For i=1 to N  

•     if (current_time = next_arrival_time of task i) 

•     put task i in ready_queue  

•  /* ready_queue is a priority queue that implements 

•      the desired scheduling policy. */ 

•  Inspect top task from ready queue, call it j 

•  If (a task is running and its priority is higher than priority of j) return  

•  Else resume task j (and put the running task into the ready queue 
if applicable); return 

OS Kernel 

Time-driven  
Scheduler 

Clock 

Real-time threads 
Admission 
Controller 

Lock 
Lib 

Resume 

Done 

Block 
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An example schedule 

Time ticks 

Scheduler 
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- Invocation times 
- Actual Execution 
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Admission controller 

• Implements schedulability analysis 

•  If U+Cnew/Pnew < Ubound admit task 

• Must account for various practical overheads. 
How? 

• Examples of overhead: 

•  How to account for the overhead of running the time-driven 
scheduler on every time-tick? 

•  How to account for the overhead of running the scheduler 
after task termination?    

• If new task admitted 

• U = U + Cnew/Pnew 

• Create a new thread 

• Register it with the scheduler 

OS Kernel 

Time-driven  
Scheduler 

Clock 

Real-time threads 
Admission 
Controller 

Lock 
Lib 

Resume 

Done 

Block 
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Library with lock primitives 

•  Lock (S) { 

•   Check if semaphore S = locked 

•   If locked  

•         enqueue running tasks in semaphore queue 

•   Else  

•         let semaphore = locked 

•  } 

•  Unlock (S) { 

•      If semaphore queue empty then 

•        semaphore = unlocked 

•      Else 

•      Resume highest-priority waiting task 

•  } 

OS Kernel 

Time-driven  
Scheduler 

Clock 

Real-time threads 
Admission 
Controller 

Lock 
Lib 

Resume 

Done 

Block 

Problem: some threads may execute blocking OS calls (e.g., disk or network read/write 
and block without calling your lock/unlock!) 


