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Rate monotonic scheduling

e Rate monotonic scheduling is the optimal fixed-priority (or static-priority)
scheduling policy for periodic tasks.

e Optimality (Trial #1):
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Rate monotonic scheduling

e Rate monotonic scheduling is the optimal fixed-priority scheduling policy
for periodic tasks.

e Optimality (Trial #2): If any other fixed-priority scheduling policy can
meet deadlines in the worst case scenario, so can RM.

* How do we prove it¢
e Consider the worst case scenario

e Show that if someone else can schedule then RM can



The worst-case scenario

* Q: When does a periodic task, T, experience the maximum delaye

* A: When it arrives together with all the higher-priority tasks (critical instance)

e |dea for the proof

e If some higher-priority task does not arrive together with T, aligning the
arrival times can only increase the completion time of T.

Critical instant theorem



Proof (Case 1)

Task 1

Task 2 []

Case 1: Higher priority task 1 is running when task 2 arrives.
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Task 1
Task 2 []
Case 1. higher priority task 1 is running when task 2 arrives
- shifting task 1 right will increase completion fime of 2
Task 1

Task 2 DO [ [ .I



Proof (Case 2)

Task 1 ‘

Task 2

Case 2: processor is idle when task 2 arrives




Proof (Case 2)

Task 1

Task 2

Case 2: processor is idle when task 2 arrives
- shifting task 1 left cannot decrease completion time of 2



Proof (Case 2)

Task 1 |
Task 2
Case 2: processor is idle when task 2 arrives
- shifting task 1 left cannot decrease completion time of task 2

|
|
Task 1 :
:
|

Task 2 DO [N e




Optimality of the RM policy

e If any other fixed-priority policy can meet deadlines so can RM

- |

Policy X meets deadlines?
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Optimality of the RM policy

e If any other policy can meet deadlines so can RM

- |

Policy X meets deadlinese YES
- RM meets deadlines
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Utilization bound for EDF

* Why is it 100%¢

e Consider a task set where:

* Imagine a policy that reserves for each task i a fraction f, of each clock
fick, where f. = C./P.

0 0 0 W I

" Clock tick
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Utilization bound for EDF

* Imagine a policy that reserves for each task i a fraction f. of each time
unit, where f. = C. /P,

I I |
e
: Clock tick

* This policy meets all deadlines, because within each period P. it reserves
for task i a total time

*Time =f P.=(C./P)P.=C. (i.e., enough to finish)
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Utilization bound for EDF

*Pick any two execution chunks that are not in EDF

order and swap them
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Utilization bound for EDF

* Pick any two execution chunks that are not in EDF

order and swap them

o Still meets deadlines!

27



Utilization bound for EDF

e Pick any two execution chunks that are not in EDF order and swap
them

— N = "3
i —_ 110

e Still meets deadlines!

e Repeat swap until all in EDF order

e - EDF meets deadlines
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Tick-based scheduling within an OS

e A real-time library for periodic tasks on Linux or Windows

* There is need to provide approximate real-time guarantees Real-time threads o
on common operating systems (as opposed to specialized —A— Admission
real-time OSessj Controller

* A high-priority “real-fime” thread pool is created and ResUMe 1
maintained

* A higher-priority scheduler is invoked periodically by timer- Time-driven
ticks to check for periodic invocation times of real-time Scheduler
threads. The scheduler resumes threads whose arrival times
have come. Dong, t

* Resumed threads execute one invocation then block. Clock

e Scheduling is preemptive

* The scheduler can implement arbitrary scheduling policies
including EDF, RM, etc. OS Kernel

* An admission controller is responsible for spawning new
periodic threads if the new task set can meet its deadlines.
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Tick-based scheduling within an OS

e Areal-time library for periodic tasks on Linux or Windows

* There is need to provide approximate real-time guarantees on Real-fime threads
common operating systems (as opposed to specialized real- —_— Admission
time OSes) Controller
* A high-priority “real-fime” thread pool is created and Y
maintained Resume
* A higher-priority scheduler is invoked periodically by timer-ticks (T
to check for periodic invocation times of real-time threads. TESCIER
The scheduler resumes threads whose arrival fimes have Scheduler
come. 'y
. _ Lock
* Resumed threads execute one invocation then block. L b Clock
Block
e Scheduling is preemptive
* The scheduler can implement arbitrary scheduling policies
including EDF, RM, etc. oS Kernel

* An admission controller is responsible for spawning new
periodic threads if the new task set can meet its deadlines.

e Scheduler implements wrappers for blocking primitives

32



The time-driven scheduler

/* N is the number of periodic tasks */
Fori=1to N
if (current_time = next_arrival_time of task i)

put task i in ready_queue

/* ready_queue is a priority queue that implements

the desired scheduling policy. */

Inspect top task from ready queue, call it |

If (a task is running and its priority is higher than priority of j) return

Else resume task | (and put the running task into the ready queu

if applicable); return

Real-time threads .
— Admission
Controller
Resume 1
Time-driven
Scheduler
Lock
Lne—> Lib Clock
Block
OS Kernel
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An example schedule

Scheduler i i i i

Task 1 I

- Invocation times
- Actual Execution

Task 2

- Invocation times
- Actual Execution

Time ticks
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An example schedule

Scheduler —|

Task 1

[

- Invocation times
- Actual Execution

Task 2

- Invocation times
- Actual Execution

Time ticks
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An example schedule

Scheduler —|

1 M

Task 1

[

- Invocation times
- Actual Execution

Task 2

- Invocation times
- Actual Execution
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An example schedule

Scheduler ‘| ‘| l—| .‘|

Task 1

- Invocation times
- Actual Execution

Task 2

- Invocation times
- Actual Execution

Time ticks



An example schedule

el 1 nap o O an Han

Task 1
- Invocation times
- Actual Execution

Task 2
- Invocation times
- Actual Execution

Time ticks



Admission conftroller

* Implements schedulability analysis

; Real-fime threads
o If U+Cnew/Pnew < Ubound admit fask —A— Admission
. . Controller
* Must account for various practical overheads.
HOW? Resume 1
e Examples of overhead: . .
ime-driven
* How to account for the overhead of running the time-driven Scheduler
scheduler on every tfime-tick? 'y
Lock
* How to account for the overhead of running the scheduler L b Clock
after task termination? Block
* If new task admitted
cU=U+C ./Prow OS Kernel
* Create a new thread

* Register it with the scheduler

4]



Library with lock primitives

e Lock (S){

J Check if semaphore S = locked

J If locked

J enqueue running tasks in semaphore queue
. Else

J let semaphore = locked

° )

e Unlock (S) {

. If semaphore queue empty then

J semaphore = unlocked

. Else

. Resume highest-priority waiting task
° )

Real-time threads .
— Admission
Controller
Resume 1
Time-driven
Scheduler
Lock
Lne—> Lib Clock
Block
OS Kernel

Problem: some threads may execute blocking OS calls (e.g., disk or network read/write

and block without calling your lock/unlock!)
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