Periodic task scheduling

Static priorities *Better utilization bounds *Deadlines less than periods *Exact test for schedulability

Quick review

- Why is rate monotonic scheduling optimal (among static priority policies)?
 - Critical instant theorem: The worst-case execution time of a job when tasks are scheduled with fixed priorities occurs when jobs belonging to all tasks release at the same instant
 - It is sufficient, then, to verify that the job that is released at the critical instant meets its deadline
 - In this worst case, rate monotonic scheduling is optimal (easy to see; if tasks are feasibly scheduled in any other order, swap based on deadlines)
- Utilization bound and optimality of EDF
 - The utilization bound is 1 (or 100%)
 - EDF is optimal because no policy can do better (may do as well but not better)

Exercise Know Your Worst Case Scenario

- Consider a periodic system of two tasks
- Let $U_i = C_i / P_i$ (for i = 1, 2)
- What is the maximum value of $\Pi_i(1-U_i)$ for a schedulable system?
- Motivation: There may be other functions of a task set rather then just utilization that also indicate schedulability.

Finding the utilization bound for RM scheduling

Finding the utilization bound for RM scheduling

Finding the utilization bound for RM scheduling

Solutions

Critically schedulable

Schedulable

i

$$\begin{cases} C_1 = P_2 - P_1 \\ C_2 = P_1 - C_1 = 2P_1 - P_2 \\ U_1 + 1 = \frac{C_1}{P_1} + 1 = \frac{C_1 + P_1}{P_1} = \frac{P_2}{P_1} \\ U_2 + 1 = \frac{C_2}{P_2} + 1 = \frac{C_2 + P_2}{P_2} = 2\frac{P_1}{P_2} \\ \prod_i (U_i + 1) = 2 \end{cases}$$

 $\prod (U_i + 1) \le 2$ Hyperbolic bound

Solutions

Hyperbolic bound for rate monotonic scheduling

• A set of periodic tasks is schedulable if

$$\prod_i (U_i + 1) \le 2$$

Hyperbolic bound for rate monotonic scheduling

• A set of periodic tasks is schedulable if

$$\prod_i (U_i + 1) \le 2$$

•It is a better bound than the Liu and Layland bound $\ U \leq n(2^{1/n}-1)$

- •Example: consider a system with two tasks such that $U_1=0.8$ and $U_2=0.1$
- •U = 0.9 > 0.83 (unschedulable according to the Liu and Layland bound)
- $(1+U_1)(1+U_2) = (1.8)(1.1) = 1.98 < 2$ (schedulable according to the hyperbolic bound)

• Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

• Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

•Can not be worse than when the period of each task is reduce to D_i .

• Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

•Can not be worse than when the period of each task is reduced to D_i .

$$\sum_{i} \frac{C_i}{D_i} \le n(2^{1/n} - 1)$$

• Consider a set of periodic tasks where each task, *i*, has a computation time, C_i , a period, P_i , and a relative deadline $D_i < P_i$.

•Can not be worse than when the period of each task is reduced to D_i .

$$\sum_{i} \frac{C_{i}}{D_{i}} \leq n(2^{1/n} - 1)^{\text{What is the problems}}$$

• Worst case <u>interference</u> from a higher priority task, j?

Time required by a higher priority task in an interval of length that corresponds to the relative deadline of task *i*.

- \bullet Interference exists only till a job completes execution, i.e., up to the response time $R_{\rm i}$
- Not necessarily up to the relative deadline Di

- \bullet Interference exists only till a job completes execution, i.e., up to the response time $R_{\rm i}$
- \bullet Not necessarily up to the relative deadline D_i

- \bullet Interference exists only till a job completes execution, i.e., up to the response time $R_{\rm i}$
- Not necessarily up to the relative deadline Di

- \bullet Interference exists only till a job completes execution, i.e., up to the response time $R_{\rm i}$
- \bullet Not necessarily up to the relative deadline D_i

 $R_i = I + C_i$

Consider a system of two tasks:

Task 1:
$$P_1$$
=1.7, D_1 =0.5, C_1 =0.5
Task 2: P_2 =8, D_2 =3.2, C_2 =2

$$I = \sum_{j} \lceil \frac{R_i}{P_j} \rceil C_j$$

 $R_i = I + C_i$

$$R_2^{(0)} = C_2 = 2$$
$$I^{(0)} = \lceil 2/1.7 \rceil (0.5) = 1$$

Consider a system of two tasks:

Task 1:
$$P_1$$
=1.7, D_1 =0.5, C_1 =0.5
Task 2: P_2 =8, D_2 =3.2, C_2 =2

 $I = \sum_{j} \lceil \frac{R_i}{P_j} \rceil C_j$

 $R_i = I + C_i$

 $R_2^{(0)} = C_2 = 2$ $I^{(0)} = \lceil 2/1.7 \rceil (0.5) = 1$

 $R_2^{(1)} = I_2^{(0)} + C_2 = 3$ $I^{(1)} = \lceil 3/1.7 \rceil (0.5) = 1$

Consider a system of two tasks:

Task 1:
$$P_1$$
=1.7, D_1 =0.5, C_1 =0.5
Task 2: P_2 =8, D_2 =3.2, C_2 =2

Consider a system of two tasks:

Task 1: P_1 =1.7, D_1 =0.5, C_1 =0.5 Task 2: P_2 =8, D_2 =3.2, C_2 =2

$$I = \sum_{j} \lceil \frac{R_i}{P_j} \rceil C_j$$

$$R_i = I + C_i$$

$$R_2^{(0)} = C_2 = 2$$
$$I^{(0)} = \lceil 2/1.7 \rceil (0.5) = 1$$

$$R_2^{(1)} = I_2^{(0)} + C_2 = 3$$
$$I^{(1)} = \lceil 3/1.7 \rceil (0.5) = 1$$

$$R_2^{(2)} = I^{(1)} + C_2 = 3$$
$$R_2^{(2)} = R_2^{(1)}$$

3 < 3.2; Task 2 is schedulable.

Lecture summary

- There are better utilization bounds than the Liu & Layland utilization bound: the hyperbolic bound
- When the relative deadline of a task is less than its period, we can apply utilization bounds
 - But such tests are even more pessimistic than normal
- We can apply exact tests for schedulability when deadlines are less than or equal to periods
 - Such tests require more computation
 - Iterative process

$$I = \sum_{j} \lceil \frac{R_i}{P_j} \rceil C_j$$
$$R_i = I + C_i$$