Periodic task scheduling

Static priorities
xBetter utilization bounds
*Deadlines less than periods
*Exact test for schedulability



Quick review

e Why is rate monotonic scheduling optimal (among static priority policies)?

e Critical instant theorem: The worst-case execution time of a job when tasks are
scheduled with fixed priorities occurs when jobs belonging to all fasks release
at the same instant

e |t is sufficient, then, to verify that the job that is released at the critical instant
meets its deadline

e |n this worst case, rate monotonic scheduling is optimal (easy to see; if tasks are
feasibly scheduled in any other order, swap based on deadlines)

e Utilization bound and optimality of EDF
e The utilization boundis 1 (or 100%)

e EDF is optimal because no policy can do better (may do as well but not better)



Exercise
Know Your Worst Case Scenario

e Consider a periodic system of two tasks
eletU =C./P (fori=172)
* What is the maximum value of IL(1-U) for a schedulable system?

e Motivation: There may be other functions of a task set rather then just
utilization that also indicate schedulability.
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Hyperbolic bound for rate monotonic scheduling

e A set of periodic tasks is schedulable if

H(Uz’-l-l) <2
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Hyperbolic bound for rate monotonic scheduling

e A set of periodic tasks is schedulable if

[[wi+1)<2

i
1/n
o[t is a better bound than the Liu and Layland bound U < n(2 /m _ 1)
*Example: consider a system with two tasks such that U1=0.8 and U2=0.1
U =0.9 > 0.83 (unschedulable according to the Liu and Layland bound)

o(T+U1)(1+U2) = (1.8)(1.1) = 1.98 < 2 (schedulable according to the
hyperbolic bound)



Scheduling faxonomy

Periodic task scheduling

/N

Rate monotonic EDF




Scheduling faxonomy

Periodic task scheduling

/N

Rate monotonic EDF




Scheduling faxonomy

Periodic task scheduling

/N

Rate monotonic EDF

with period =
relative
deadline




Scheduling faxonomy

Periodic task scheduling

/

Rate Deadline monotonic

N

EDF

with period >
relative
deadline



Deadline monotonic scheduling

e Consider a set of periodic tasks where each task, i, has a computation
fime, C, a period, P, and a relative deadline D. <P..
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Deadline monotonic scheduling

e Consider a set of periodic tasks where each task, i, has a computation
fime, C, a period, P, and a relative deadline D. <P..
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A better condition for schedulability

e Worst case interference from a higher priority task, j¢




A better condition for schedulability

e Worst case interference from a higher priority task, j¢

Time required by a higher priority task in an
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A better condition for schedulability

e Worst case interference from a higher priority task, j¢
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An exact condition for schedulabillity

e Interference exists only till a job completes execution, i.e., up to the
response fime R;

e Not necessarily up to the relative deadline D;
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An exact condition for schedulabillity

e Interference exists only till a job completes execution, i.e., up to the
response fime R;

e Not necessarily up to the relative deadline D;

P.

C. —l
) S ' I We also have the following relation:
| I |
A i [
R, Solve iteratively for the smallest

R; — R to satisfy both relations
I = ZfFj]Cj ’

27



Example
C, -
: D.
[ oom o
o P,
R

Consider a system of two tasks:

Task 1: P,=1.7, D,=0.5, C,=0.5
Task 2: P,=8, D,=3.2, C,=2
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Consider a system of two tasks:

Task 1: P,=1.7, D,=0.5, C,=0.5
Task 2: P,=8, D,=3.2, C,=2

RY) =Cy=2
100 =12/1.77(0.5) = 1

RV =14+C,=3
IM =13/1.71(0.5) = 1

Rg2) :I(l) _I_C2 — 3
R® — gV

3 < 3.2; Task 2 is schedulable.
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Lecture summary

e There are better utilization bounds than the Liu & Layland utilization
bound: the hyperbolic bound

e When the relative deadline of a task is less than its period, we can apply
utilization bounds

e But such tests are even more pessimistic than normal

e We can apply exact tests for schedulability when deadlines are less than
or equal to periods

e Such tests require more computation R
— M0
e [terative process I= Z[ P; ]CJ
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