Resource sharing and blocking

The Mars Pathfinder
Unbounded priority inversion
Priority inheritance

Lecture overview

e Unbounded priority inversion problem (occurred in the Mars Pathfinder)

¢ Blocking and the priority inheritance protocol

e Mulfithreading and synchronization
e Semaphores are the most common mechanism

e Supported by the PThreads library

What really happened on Marse

Backw
Sens:

Source: NASA JPL 3

Source: NASA JPL

Mars Pal:hFlncler

LGA = Low GainAntenna
HBGA = High Gain Antenna

IMP = Imager For Mars
Pathfinder (cameras)

APXS = Alpha Proton X-Ray
Spectrometer

TEMP = Temperature
ANT = Antenna

RDVEIS ANT

X

TEMP [,
SENSOR
LOCATIONS

PRESSURE
SENSOR
LOCATION

Source: Jek Propulsion Laboratory, 1994

-

L
- Antenna
Solar Panel \f///
Matenal
Alpha Proton Ac?h%rrlgnce
X-ray Spectrometer Experiment
i~
e
; Cameras/
Lasers
20
. Q@@@ OOO
@)
Rocker-Bogie Warm Electronics Box

Mobility System

Mars Pathfinder

Camera

Radio

CPU

VME Bus

MIL-STD-1553 Bus

ASI/MET
Radar Altimeter
Accelerometers

Sun Sensor
Star Scanner
Valves
Thrusters

Mars Pathfinder

* Many important tasks
e bc_sched: plans transactions on the 1553 bus
* highest priority task
e bc_dist: gathers data from the 1553 bus
e third-highest priority task
e |ots of medium-priority tasks
e asi/met: handles data collection for scientific experiments

e [ow priority task

Schedule

data sent .
on bus bc_dist

t1 t2 t3

T=0.125 seconds

0.125 seconds

The first thing bc_sched would do is make sure that bc_dist

had finished:;

if not, it would reset the system (so the Deadline for bc_dist

was t4)

t1

t2

t3

t4

t5

t1

ASI/MET
(low prio)

|

|

t1

t2

t3

t4

t5

t1

ASI/MET
(low prio)

. S

| | =
t1 \ t2 t3
Asks for semaphore, but is

swapped out after the semaphore
is granted, but before it can use it

t4

t5

t1

Med. Prio task(s)
S

ASI/MET
(low prio)

. S

| | =
t1 \ t2 t3
Asks for semaphore, but is

swapped out after the semaphore
is granted, but before it can use it

t4

t5

t1

bc_dist
-
Med. Prio task(s)
S

ASI/MET
(low prio)

. S

| | =
t1 \ t2 t3
Asks for semaphore, but is

swapped out after the semaphore
is granted, but before it can use it

t4

t5

t1

Asks for semaphore, but it is being
held by ASI/MET. So it blocks.

bc_dist\\

Med. Prio task(s)
S

ASI/MET
(low prio)

| 4 | | |

| | | |
t1 \ t2 t3 t4
Asks for semaphore, but is

swapped out after the semaphore
is granted, but before it can use it

t5

t1

Asks for semaphore, but it is being
held by ASI/MET. So it blocks.

bc_dist\\

Med. Prio task(s)
S A

ASI/MET Med. Prio task(s)
(low prio)

| 4 | | |

| | | |
t1 \ t2 t3 t4
Asks for semaphore, but is

swapped out after the semaphore
is granted, but before it can use it

t5

t1

Asks for semaphore, but it is being Sees that bc_dist missed its

held by ASI/MET. So it blocks. deadline, so resets system
bc dist\\ \ bc_sched
T - L
Med. Prio task(s)
N
ASI/MET Med. Prio task(s)
(low prio)
G
| ‘ | | | | |

| | I 1 1 |
t1 \ t2 t3 t4 t5 t1
Asks for semaphore, but is

swapped out after the semaphore
is granted, but before it can use it

This phenomenon is called Priority Inversion.

Blocking

e Tasks have synchronization constraints
e Use semaphores to protect critical sections

e Blocking can cause a higher priority task to wait for a lower
priority fask to unlock a resource

e We always assumed that higher priority tasks can preempt
lower priority tasks

e As it turns out, that may not be the case... so how do we make
the priority rules consistent

The priority inheritance protocol

e Allow a task to inherit the priority of the highest priority task that it is
blocking

Attempt to lock S
results in blocking
High-priority task

A A
Preempt \\ '\\\\\UNOCKS
Lock S
Priority
Inversio
Lock S n
Unlock S
Low-priority task \ v /

B .

The priority inheritance protocol

e Allow a task to inherit the priority of the highest priority task that it is
blocking

Attempt to lock S
results in blocking
High-priority task

Unbounded Priority Inversion
Preempt

Intermediate-priority tasks

A

Lock S
Preempt

Low-priority task \ v

20

The priority inheritance protocol

e Allow a task to inherit the priority of the highest priority task that it is

blocking

High-priority task

Attempt to lock S
results in blocking

A -"“'_
: RS \

\ Unlock S
Preempt Lock S
Intermediate-priority tasks _ |
Lock S Priority inheritance
Unlock S
Low-priority task \q v /

21

The importance of good theory

e [Speaking on the Mars Pathfinder problem at the Real-Time Systems Symposium 1997] David
[David Wilner, CTO, WindRiver Systems and makers of VxWorks] also said that some of the
real heroes of the situation were some people from CMU who had published a paper he'd
heard presented many years ago who first identified the priority inversion problem and
proposed the solution. He apologized for not remembering the precise details of the paper
or who wrote it. Bringing things full circle, it turns out that the three authors of this result
were all in the room, and at the end of the talk were encouraged by the program chair to
stand and be acknowledged. They were Lui Sha, John Lehoczky, and Raj Rajkumar. When was
the last time you saw a room of people cheer a group of computer science theorists for
their significant practical contribution to advancing human knowledge? :-) It was quite a

moment.
e From “What really happened on Mars?”

e Mike B. Jones, Microsoft;
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

- For the record, the paper was: L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. In I[EEE Transactions on Computers,
vol. 39, pp. 1175-1185, Sep. 1990.

22

Blocking time

* What is the longest fime a task can be blocked (waiting for lower
priority tasks to release a resource)?

e Let there be N tasks and M semaphores

e The length of the largest critical section of Task T is Bi

23

Blocking time

e Consider the instant when a high-priority task arrives

e What is the maximum length of time it may need to wait for @
lower priority task to finishe

If | am a task, priority inversion occurs
when

(a) Lower priority task holds a resource
| need (direct blocking)

(b) Lower priority task inherits a higher
priority than me because it holds a
resource the higher-priority task needs
(push-through blocking)

24

Maximum blocking time

e |f all crifical sections are of equal length, B
¢ Blocking time = B x min(N, M)
e Why?¢

e And what if the crifical sections are of differing lengthse

If | am a task, priority inversion occurs
when

(a) Lower priority task holds a resource
| need (direct blocking)

(b) Lower priority task inherits a higher
priority than me because it holds a
resource the higher-priority task needs
(push-through blocking)

25

Maximum blocking time

e |f all critical sections are of equal length, B
e Blocking time = B x min(N, M)
e Why?¢
e And what if the critical sections are of differing lengthse
e Find the maximum length crifical section for each resource
e Add the top min(N, M) sections in size

e The total priority inversion fime experienced by Task Ti is
denoted B;

e Remember: when computing the blocking time, you need only
consider tasks with lower priority.

26

Highlights

e We discussed the unbounded priority inversion problem and the
impact of blocking on a high-priority task.

e A high-priority task is blocked when a low-priority task holds a resource
(maybe a semaphore) that the high-priority task needs.

e Unbounded priority inversion can be avoided if we use the priority
inheritance protocol.

e For schedulability analysis, we need to determine the maximum
blocking time a task can experience. This can be computed by
considering the resources used by lower priority tasks.

27

