
Schedulability with resource sharing

Priority inheritance protocol
Priority ceiling protocol
Stack resource policy

1

Lecture overview

• We have discussed the occurrence of unbounded priority inversion

• We know about blocking and blocking times

• Now: Evaluating schedulability in combination with protocols for avoiding
unbounded priority inversion

• Priority ceiling protocol to prevent deadlocks

• Stack-based resource policy

•  Improves on other policies

• Extends to EDF

2

Blocking

• Tasks have synchronization constraints

• Use semaphores to protect critical sections

• Blocking can cause a higher priority task to wait for a lower
priority task to unlock a resource

• We always assumed that higher priority tasks can preempt
lower priority tasks

• To make rules consistent, we discussed the priority inheritance
approach

3

The priority inheritance protocol

• Allow a task to inherit the priority of the highest priority task that it is
blocking

…

High-priority task

Low-priority task

Lock S

Preempt

Intermediate-priority tasks
…

Attempt to lock S
results in blocking

Lock S

Unlock S

Unlock S

Priority inheritance

4

Maximum blocking time

• If all critical sections are of equal length, B

• Blocking time = B x min(N, M)

• Why?

• And what if the critical sections are of differing lengths?

Semaphore Queue
Resource

1

Semaphore Queue
Resource

2

Semaphore Queue
Resource

M

If I am a task, priority inversion occurs
when
(a) Lower priority task holds a resource
I need (direct blocking)
(b) Lower priority task inherits a higher
priority than me because it holds a
resource the higher-priority task needs
(push-through blocking)

5

Maximum blocking time

•  If all critical sections are of equal length, B

• Blocking time = B x min(N, M)

• Why?

• And what if the critical sections are of differing lengths?

• Find the maximum length critical section for each resource

• Add the top min(N, M) sections in size

•  The total priority inversion time experienced by Task Ti is denoted Bi

• Remember: when computing the blocking time, you need only consider
tasks with lower priority.

• And a task may be blocked at most once by a lower priority task.

6

Schedulability tests

• For the fixed-priority scheduling case

• We can use the Liu & Layland bound with some modifications

• For task Tk: we need to consider the blocking by lower priority tasks

For task Tk, we need to consider:
a) preemption by higher priority tasks
b) blocking from lower priority tasks
c) bound for Tk involves only k tasks

Why do we test each task
separately? Why can we not
have one utilization bound test
like we did earlier? 7

Each instance of a task may
experience blocking (worst case);
equivalent to increasing the execution
time of the task by the blocking time.

Example: blocking and schedulability

• Consider the following set of tasks, which share resources R1, R2 and R3

• Relative deadline are equal to periods; tasks scheduled using RM
policy

•  T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

•  T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

•  T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units
respectively

•  T4: P4=80, e2=8, uses R2 for 5 time units

Without resource constraints

The task set satisfies the Liu and Layland bound; easily schedulable by RM

Is there a difference?

We will see that there is no
difference in this example.
In other cases, maybe.

8

Example: blocking and schedulability

•  Consider the following set of tasks, which uses resources R1, R2 and R3

•  Relative deadline are equal to periods; tasks scheduled using RM policy

•  T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

•  T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

•  T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

•  T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints
T1 can potentially be blocked by T2, T3 and T4

 It can be blocked by T2 on resource R2 for upto 2 time units
 It can be blocked by T3 on resource R1 for upto 4 time units
 It can be blocked by T4 on resource R2 for upto 5 time units

The worst-case wait for R1 is 3 units (only T3 can block T1)
The worst-case wait for R2 is 5 units (T2 can block T1 for 2 units or T4 can block T1 for 5 units)
Maximum wait for resources is B1 = 3+5 = 8

T1 is schedulable
9

Example: blocking and schedulability

•  Consider the following set of tasks, which uses resources R1, R2 and R3

•  Relative deadline are equal to periods; tasks scheduled using RM policy

•  T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

•  T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

•  T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

•  T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints
T2 can be blocked by T3 and T4
T3 can block T2 in two ways:

 directly on R3 (upto 4 units)
 by obtaining priority of T1 when using R1 (upto 3 units) (push-through)

T4 can block T2 in two ways:
 directly when using R2 (upto 5 units)
 by obtaining priority of T1 when using R2 (upto 5 units) (push-through)

The worst-case blocking by T3 is 4 time units
The worst-case blocking by T4 is 5 time units
Maximum wait for resources is B2 = 5+4 = 9

T2 is schedulable
10

A low priority task can block a
high priority task at most once.
With priority inheritance, it will
get a higher priority and
continue till it releases the lock.
Therefore, it can block a high
priority task at most once.

Example: blocking and schedulability

•  Consider the following set of tasks, which uses resources R1, R2 and R3

•  Relative deadline are equal to periods; tasks scheduled using RM policy

•  T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

•  T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

•  T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

•  T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints
T3 can be blocked by T4
even when it shares no resource with T4 (lower priority task)

 Notice that T4 may execute with priority of T1 (priority inheritance)
 T4 may execute with the priority of T1 for at most 5 time units
 Classic case of push-through blocking

Maximum blocking due to T4 is 5 time units; B3 = 5

T3 is schedulable

11

Example: blocking and schedulability

•  Consider the following set of tasks, which uses resources R1, R2 and R3

•  Relative deadline are equal to periods; tasks scheduled using RM policy

•  T1: P1=20, e1=3, uses R1 and R2 separately for 1 time unit each

•  T2: P2=30, e2=6, uses R2 and R3 simultaneously for 2 time units

•  T3: P3=50, e2=10, uses R1 and R3 separately for 3 and 4 time units respectively

•  T4: P4=80, e2=8, uses R2 for 5 time units

With resource constraints
T4 can never be blocked
because it is the lowest priority task
Maximum wait for resources is B4 = 0

T4 is schedulable

12

General approach to computing blocking
times

• For a high-priority task

• Examine all tasks with lower priority

• Determine the worst-case blocking that it may offer (consider the
highest priority that it can inherit)

• Examine all semaphores/resources

• Determine the worst-case blocking due to that resource

• Consider lower-priority tasks that may inherit a higher priority when
they hold the semaphore

Does priority inheritance solve all problems?

14

• Actually, not all problems

• We can still have a deadlock if resources are locked in opposing orders

• As we saw two lectures back

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Deadlocks

15

• Can attribute it to sloppy programming

• But can we solve the problem in a different way

• Avoid deadlocks by designing a suitable protocol

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Priority ceiling protocol

• Definition: the priority ceiling of a semaphore is the highest priority
among all tasks that can lock the semaphore

• A task that requests lock Rk is denied if its priority is not higher than the
highest priority ceiling of all currently locked semaphores (let us say this
belongs to semaphore Rh)

•  The task is said to be blocked by the task holding semaphore Rh

• A task inherits the priority of the top higher-priority task it is blocking

16

Deadlocks?

17

• A deadlock can occur if two tasks locked semaphores in opposite
order. Can it occur with the priority ceiling protocol?

Lock R1

Lock R2

Try R1, Block

Try R2, Deadlock

Preemption

Priority ceilings

18

• T1 and T2 use R1 and R2: the priority ceiling of a resource is the priority of the
highest priority task that uses it, therefore the priority ceilings of R1 and R2
are the same: the priority of T1

Lock R1

Lock R2: Denied because its priority is
not higher than ceiling of R1

Lock R2:
succeeds because T2 inherits
priority of T1 and holds R1

Preemption

Unlock R1
Unlock R2

Inherit higher priority

A task that requests lock Rk is denied if its
priority is not higher than the highest priority
ceiling of all currently locked semaphores

A task inherits the priority of the top higher-
priority task it is blocking

T1

T2

Immediate inheritance

• Priority ceiling protocol with slight difference: when a semaphore is
locked, the locking task raises its priority to the ceiling priority of the
semaphore (immediate inheritance). When the semaphore is unlocked
the task's priority is restored.

Lock R1; inherit T1’s priority

Lock R2:
succeeds because T2 inherits
priority of T1 and holds R1

Instance of T1 released; no preemption

Unlock R1; priority drops to original
level

T1

T2

Unlock R2

Preemption

19

Schedulability test for priority ceiling protocol

•  The test is the same as with the priority inheritance protocol

•  Worst-case blocking time may change when compared to PIP

20

For task Tk

Stack-based resource policy

•  Priority inheritance protocol and priority ceiling protocol are easy to analyze in a
fixed-priority setting

•  What about dynamic priority scheduling?

•  Stack-based resource policy [SRP]

•  Preemption level: Any fixed value that satisfies the statement “if A arrives after
B and priority(A) > priority(B), then PreemptionLevel(A) > PreemptionLevel(B).”

•  Resource ceiling for resource R: Highest preemption level of all tasks that may
access the resource R

•  System ceiling: Highest resource ceiling among all currently locked resources

•  A task can preempt another task if

•  it has the highest priority and

•  its preemption level is higher than the system ceiling

21

Stack-based resource policy with EDF

• Priority is inversely proportional to the absolute deadline

• Preemption level is inversely proportional to the relative deadline

• Observe that:

•  If A arrives after B and Priority(A) > Priority(B) then PreemptionLevel(A)
> PreemptionLevel(B)

B

A

22

Priority ceiling vs. stack-based resource policy

Priority Ceiling Protocol

Need yellow but
priority is lower
than red ceiling

Need blue but
priority is lower
than red ceiling Need red but

priority is lower
than red ceiling

Done
23

Priority ceiling vs. stack-based resource policy

Stack-based Resource Policy

Can’t preempt.
Preemption level is not
higher than ceiling.

Notice that SRP is similar to immediate inheritance in PCP.
However, with no static priority levels, it needs a preemption level.

24

Analysis with EDF and SRP

• As simple as other protocols

For task Tk
Maximum blocking due to task
with lower preemption level; in
the case of EDF: with period Pj
such that Pk < Pj.

Tasks are sorted such that the task
with shortest period is T1 and so on.

25

Highlights

• Schedulability analysis needs to account for blocking due to low priority
tasks

• Priority inheritance protocol (PIP) may not prevent deadlocks

• Deadlocks can be prevented with the priority ceiling protocol (PCP)

•  To deal with dynamic priority policies (such as EDF), we need a different
policy: the stack-based resource policy (SRP)

• SRP (and the immediate inheritance version of the PCP) have efficient
implementations

• Reduce the number of context switches

• SRP also prevents deadlocks (note the similarities between PCP and
SRP)

26

