
MISRA-C
Subset of the C language for critical systems

SAFETY-CRITICAL SYSTEMS

  System is safety-critical if people might die due
to software bugs

  Examples
  Automobile stability / traction control
  Medical automation
  Many military applications
  You develop safety-critical software differently from

non-critical software

MISRA-C

 MISRA – Motor Industry Software Reliability
Association

  Their bright idea:
  Can’t avoid C
  But can force developers to avoid features of C

that are known to be problematic
  Some language flaws
  Some legitimate features that happen to be bad for

embedded software

 Most of MISRA-C is just good common sense for
any C programmer

TERMINOLOGY

  Execution error: Something illegal done by a
program
  Out-of-bounds array reference
  Divide by zero
  Uninitialized variable usage

  Trapped execution error: Immediately results in
exception or program termination

 Untrapped execution error: Program keeps
running
  But may fail in an unexpected way later on
  E.g., due to corrupted RAM
  In C, operations with undefined behavior are not

trapped

SAFETY

 A safe language does not allow untrapped
execution errors

 A statically safe language catches all
execution errors at compile time

 Useful languages can’t be completely
statically safe
  Java is dynamically safe
  C and C++ are very unsafe
  MISRA C is not safe either

 However, adherence to MISRA-C can largely
be statically checked
  This eliminates or reduces the likelihood of some

kinds of untrapped execution errors

MISRA-C RULE 1.2

 No reliance shall be placed on undefined or
unspecified behavior.
  Lots of things in C have undefined behavior

  Divide by zero
  Out-of-bounds memory access
  Signed integer overflow

  Lots of things in C have implementation-defined
and unspecified behavior
  printf (“a”) + printf (“b”);

  Both of these hard to detect at compile time,
in general

  Implementation-defined behavior is fine in
MISRA-C
  Why?

MISRA-C RULE 5.2

  Identifiers in an inner scope shall not use the
same name as an identifier in an outer scope,
and therefore hide that identifier.

 int total;
 int foo (int total) {
 return 3*total;
 }

 What does this code mean?
 Why is it bad?

MORE MISRA-C

 Rule 6.3: Typedefs that indicate size and
signedness should be used in place of the
basic types.
  For example uint32_t or int8_t
  Why?
  Good idea in general?

 Rule 9.1: All automatic variables shall have
been assigned a value before being used.
  Data segment: Initialized by programmer
  BSS segment: Initialized to zero
  Stack variables: Initialized to garbage

MORE MISRA-C

 Rule 11.1: Conversions shall not be performed
between a pointer to a function and any type
other than an integral type.

 Rule 11.5: A cast shall not be performed that
removes any const or volatile qualification from
the type addressed by a pointer.

MORE MISRA-C

  Rule 12.1: Limited dependence should be placed
on C’s operator precedence rules in expressions.

  What does this program mean?

int main (void) {
 int x = 0;
 if (x & 1 == 0) {
 printf ("t\n");
 } else {
 printf ("f\n");
 }
}

 Rule 12.2: The value of an expression shall be
the same under any order of evaluation that
the standard permits.

 Rule 12.3: The sizeof operator shall not be
used on expressions that contain side effects.
  E.g. sizeof(x++);
  What does this code mean?
  Absurd that this is permissible in the first place

 Rule 12.4: The right-hand operand of a logical
&& or || operator must not contain side
effects.
  && and || are short-circuited in C

  Evaluation terminates as soon as the truth of falsity of the
expression is definite

  if(x||y++){...}

  Can this be verified at compile time?
  What is a side effect anyway?

  Page fault?
  Cache line replacement?

  12.10: The comma operator shall not be used.
  Some of the most unreadable C makes use of

commas

(C-=Z=!Z) ||(printf("\n|"), C = 39, H--);

  13.3: Floating-point expressions shall not be
tested for equality or inequality.
  Why?

  14.1: There shall be no unreachable code.
  Good idea?

  14.7: A function shall have a single point of exit
at the end of the function.
  Good idea?

  16.2: Functions shall not call themselves, either
directly or indirectly.

  16.10: If a function returns error information,
then that error information shall be tested.
  What does scanf() return? printf()? fclose()?

  17.6: The address of an object with automatic
storage shall not be assigned to another object
that may persist after the first object has
ceased to exist.

 int * foo (void) {
 int x;
 int *y = &x;
 return y;
 }

  This is a common (and nasty) C/C++ error
 How is this avoided in Java?

  18.3: An area of memory shall not be reused for
unrelated purposes.
  No overlays!

  19.4: C macros shall only expand to a braced
initializer, a constant, a parenthesized
expression, a type qualifier, a storage class
specifier, or a do-while-zero construct.

  20.4: Dynamic heap memory allocation shall
not be used.
  Woah!

MISRA LIMITATIONS

 What cannot be accomplished within the
MISRA framework?
  Safety
  Eliminating the preprocessor
  Generics

  “A shack built on a swamp”

TOOL SUPPORT FOR MISRA

 Goals:
  Compiler should emit warning or error for any

MISRA rule violation
  Should not emit warnings or errors for code not

violating the rules

  Tools:
  Compilers from Green Hills, IAR, Keil
  PC-Lint

 Reportedly there is considerable variation
between tools

OTHER LANGUAGE SUBSETS

  SPARK Ada
  Subset of Ada95
  Probably the most serious attempt to date at a safe,

statically checkable language for critical software
  Too bad Ada is so uncool...

  Embedded C++
  No multiple inheritance
  No runtime type information (RTTI)
  No exceptions
  No templates
  No namespaces
  No new-style type casts

MORE SUBSETS

  J2ME
  Not actually a language subset
  Restricted Java runtime environment that has far

smaller memory footprint
  Popular on cell phones, etc.

  JavaCard
  Very small – targets 8-bit processors

  Basic ideas:
  A good language subset restricts expressiveness a

little and restricts potential errors a lot
  All languages have warts (at least in the context of

embedded systems)
  Simpler compilers may be better

SUMMARY

 C has clear advantages and disadvantages
for building safety-critical embedded software

  MISRA-C mitigates some of the disadvantages

  Language subsetting can be a good idea

