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Focus of this Talk 

 Multicore platforms are predicted to get 
much larger in the future. 
» 10s or 100s of cores per chip, multiple 

hardware threads per core. 

 Research Question: How will different 
real-time scheduling algorithms scale? 

» Scalability is defined w.r.t. schedulability 
(more on this later). 
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Outline 

 Background. 
» Real-time workload assumed. 
» Scheduling algorithms evaluated. 
» Some properties of these algorithms. 

 Research questions addressed. 
 Experimental results. 
 Observations/speculation. 
 Future work. 
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Real-Time Workload Assumed in this Talk 

  Set τ of periodic tasks scheduled on M cores: 
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This is an earliest-deadline-first schedule. 
Much of our work pertains to EDF scheduling… 



10 Real-Time Scalability 

Scheduling vs. Schedulability 

 W.r.t. scheduling, we actually care about two 
kinds of algorithms: 
» Scheduling algorithm (of course). 

– Example: Earliest-deadline-first (EDF): Jobs with earlier 
deadlines have higher priority. 

» Schedulability test. 

Test for 
EDF 

τ 
yes 
no 

no timing requirement 
will be violated if τ is 
scheduled with EDF 

a timing requirement 
will (or may) be  
violated … 
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Multiprocessor Real-Time Scheduling 

Two Approaches: 

Steps: 
1.  Assign tasks to processors (bin 

packing). 
2.  Schedule tasks on each 

processor using a uniprocessor 
algorithm. 

Partitioning Global Scheduling 

Important Differences: 
•  One task queue. 
•  Tasks may migrate among 

the processors. 
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Scheduling Algorithms Considered 

 Partitioned EDF: PEDF. 
 Preemptive & Non-preemptive Global 

EDF: GEDF & NP-GEDF. 
 Clustered EDF: CEDF. 

» Partition onto clusters of cores, globally 
schedule within each cluster 

L2 

From other 
8 cores… 

L1 

C C C C 

L1 

C C C C clusters 
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Scheduling Algorithms (Continued) 

 PD2, a global Pfair algorithm. 
» Schedule jobs one quantum at a time at a 

“uniform” rate. 
– May preempt and migrate jobs frequently. 

 Staggered PD2: S-PD2. 
» Same as PD2 but quanta are “staggered” to 

avoid excessive bus contention. 
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PD2 Example 

  Under partitioning & most global algorithms, 
overall utilization must be capped to avoid 
deadline misses. 
»  Due to connections to bin-packing. 

  Exception: Global “Pfair” algorithms do not 
require caps. 
»  Such algorithms schedule jobs one quantum at a time. 

– May therefore preempt and migrate jobs frequently. 
–  Perhaps less of a concern on a multicore platform. 

  Under most global algorithms, if utilization is not 
capped, deadline tardiness is bounded. 
»  Sufficient for soft real-time systems. 

3 tasks with parameters (2,3) on two processors… 

0 10 20 30 

T = (2,3) 

5 15 25 

U = (2,3) 

V = (2,3) 

On Processor 1 On Processor 2 
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Schedulability 

 HRT: No deadline is missed. 
 SRT: Deadline tardiness is bounded. 
 For some scheduling algorithms, 

utilization loss is inherent when checking 
schedulability. 
» That is, schedulability cannot be 

guaranteed for all task systems with total 
utilization at most M. 
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Example: PEDF 

  Under partitioning & most global algorithms, 
overall utilization must be capped to avoid 
deadline misses. 
»  Due to connections to bin-packing. 

  Exception: Global “Pfair” algorithms do not 
require caps. 
»  Such algorithms schedule jobs one quantum at a time. 

– May therefore preempt and migrate jobs frequently. 
–  Perhaps less of a concern on a multicore platform. 

  Under most global algorithms, if utilization is not 
capped, deadline tardiness is bounded. 
»  Sufficient for soft real-time systems. 

Example: Partitioning three tasks with parameters 
(2,3) on two processors will overload one processor. 

In terms of bin-packing… 

Processor 1 Processor 2 

Task 1 

Task 2 Task 3 

0 

1 
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Schedulability Summary 

 HRT  SRT 

PEDF  util. loss  util. loss (same as HRT) 
GEDF  util. loss  no loss 
NP-GEDF  util. loss  no loss 
CEDF  util. loss  util. loss (not as bad as PEDF) 

PD2  no loss  no loss 
S-PD2  slight loss  no loss 

 (must shrink periods 
  by one quantum) 
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GEDF SRT Example 

  Under partitioning & most global algorithms, 
overall utilization must be capped to avoid 
deadline misses. 
»  Due to connections to bin-packing. 

  Exception: Global “Pfair” algorithms do not 
require caps. 
»  Such algorithms schedule jobs one quantum at a time. 

– May therefore preempt and migrate jobs frequently. 
–  Perhaps less of a concern on a multicore platform. 

  Under most global algorithms, if utilization is not 
capped, deadline tardiness is bounded. 
»  Sufficient for soft real-time systems. 

Earlier example with GEDF… 

0 10 20 30 

T = (2,3) 

5 15 25 

U = (2,3) 

V = (2,3) 

Tardiness is at most one quantum. 
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Outline 

 Background. 
» Real-time workload assumed. 
» Scheduling algorithms evaluated. 
» Some properties of these algorithms. 

 Research questions addressed. 
 Experimental results. 
 Observations/speculation. 
 Future work. 
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Research Questions 

  In theory, PD2 is always preferable. 
»  It is optimal (no utilization loss). 

 What about in practice? 
» That is, what happens if system overheads 

are taken into account? 
 Do migrations really matter on a 

multicore platform with a shared cache? 
 As multicore platforms get larger, will 

global algorithms scale? 

Focus of this Talk: An Experimental 
comparison of these scheduling 
algorithms on the basis of schedulability. 
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Test System 

  HW platform: Sun Niagara (UltraSPARC T1). 

– OS has 32 “logical CPUs” to manage. 
–  Far larger than any system considered before in RT literature. 
– Note: CEDF “cluster” = 4 HW threads on a core. 

Core 1 Core 8 

L1 L1 

L2 

… 
•  1.2 GHz “RISC-like” 
   cores. 

•  Relatively simple, 
   e.g., no instr. 
   reordering 
   or branch prediction. 

•  Caches somewhat 
   small compared to 
   Intel. 

4 HW threads 
per core 

16K (8K) L1 
instr. (data) 
cache per 
core 
Shared 3MB 
L2 
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Test System (Cont’d) 

 Operating System: LITMUSRT: LInux Testbed 
for MUltiprocessor Scheduling in Real-Time 
systems. 
» Developed at UNC. 
» Extends Linux by allowing different schedulers to 

be linked as “plug-in” components. 
» Several (real-time) synchronization protocols are 

also supported. 
» Code is available at http://www.cs.unc.edu/

~anderson/litmus-rt/. 
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Methodology 

 Ran several hundred (synthetic) task sets 
on the test system. 

 Collected 70 GB of raw overhead samples. 
 Distilled expressions for average (for SRT) 

and worst-case (for HRT) overheads. 
 Conducted schedulability experiments 

involving 8.5 million randomly-generated 
task sets with overheads considered. 

Note: This step is offline.  It 
does not involve the Niagara. 
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Kinds of Overheads 

  Tick scheduling overhead. 
»  Incurred when the kernel is invoked at the beginning of 

each quantum (timer “tick”).  A quantum is 1ms. 
  Release overhead. 

»  Incurred when the kernel is invoked to handle a job 
release. 

  Scheduling overhead. 
»  Incurred when the scheduler (in the kernel) is invoked. 

  Context-switching overhead. 
»  Non-cache-related costs associated with a context switch. 

  Preemption/migration overhead. 
»  Costs incurred upon a preemption/migration due to a loss 

of cache affinity. 

These overheads can be accounted 
for in schedulability tests by inflating 

job execution costs. 

(Doing this correctly is a little tricky.) 
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Kernel Overheads 

Alg  Scheduling Overhead (in µs) 
PD2  32.7    
S-PD2  43.1      
GEDF/NP-GEDF  55.2+.26N  (N = no. of tasks) 

 Most overheads were small (2-15µs) except 
worst-case overheads impacted by global 
queues. 
» Most notable: Worst-case scheduling overheads 

for PD2, S-PD2, and GEDF/NP-GEDF: 
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Preemption/Migration Overheads 

 Obtained by measuring synthetic tasks, each 
with a 64K working set & 75/25 read/write ratio. 
»  Interesting trends: PD2 is terrible, staggering really 

helps, preempt. cost ≈ mig. cost per algorithm, but 
algorithms that migrate have higher costs. 

               Worst-Case Overheads (in µs) 
Alg  Overall    Preemption  Intra-Cluster Mig  Inter-Cluster Mig  
PD2  681.1    649.4   654.2   681.1 
S-PD2  104.1    103.4   103.4   104.1 
GEDF  375.4    375.4   326.8   321.1 
CEDF  171.6    171.6   167.3     --- 
PEDF  139.1    139.1     ---     --- 
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Schedulability Results 

  Generated random tasks using 6 distributions 
and checked schedulability using “state-of-
the-art” tests (with overheads considered). 
»  8.5 million task sets in total. 

  Distributions: 
»  Utilizations uniform over 

–  [0.001,01] (light), 
–  [0.1,0.4] (medium), and  
–  [0.5,09] (heavy). 

»  Bimodal with utilizations distributed over either 
[0.001,05) or [0.5,09] with probabilities of 
–  8/9 and 1/9 (light), 
–  6/9 and 3/9 (medium), and 
–  4/9 and 5/9 (heavy). 
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for these 
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HRT Summary 

  PEDF usually wins. 
»  Exception: Lots of heavy tasks (makes bin-packing 

hard). 
  S-PD2 usually does well. 

»  Staggering has an impact. 

  PD2 and GEDF are quite poor. 
»  PD2 is negatively impacted by high preemption and 

migration costs due to aligned quanta. 
»  GEDF suffers from high scheduling costs (due to 

the global queue). 
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HRT, Bimodal Light 

PEDF peforms pretty well if most 
task utilizations are low. 

S-PD2 performs pretty well too. 
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HRT, Bimodal Light 
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HRT, Bimodal Medium 

In this and the next  slide, as the 
fraction of heavy tasks grows, the gap 
between S-PD2 and PEDF narrows.  
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HRT, Bimodal Medium 
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HRT, Bimodal Heavy 
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SRT Summary 

 PEDF is not as effective as before, but 
still OK in light-mostly cases. 

 CEDF performs the best in most cases. 
 S-PD2 still performs generally well. 
 GEDF is still negatively impacted by 

higher scheduling costs. 
» Note: SRT schedulability for GEDF entails 

no utilization loss. 
» NP-GEDF and GEDF are about the same. 

 Note: The scale is different from before. 
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SRT, Bimodal Light 

PEDF and CEDF perform well if tasks 
are mostly light. 

Note: S-PD2 never performs really badly 
in any experiment. 
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SRT, Bimodal Light 
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SRT, Bimodal Medium 

This and the next slide show that as the 
frequency of heavy tasks increases, 
PEDF degrades.  CEDF isn’t affected 
by this increase much. 
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SRT, Bimodal Medium 
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SRT, Bimodal Heavy 
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Outline 

 Background. 
» Real-time workload assumed. 
» Scheduling algorithms evaluated. 
» Some properties of these algorithms. 

 Research questions addressed. 
 Experimental results. 
 Observations/speculation. 
 Future work. 
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Observations/Speculation 

  Global algorithms are really sensitive to how 
shared queues are implemented. 
»  Saw 100X performance improvement by switching 

from linked lists to binomial heaps. 
»  Still working on this… 
»  Speculation: Can reduce GEDF costs to close to 

PEDF costs for systems with ≤ 32 cores. 
  Per algorithm, preempt. cost ≈ mig. cost. 

»  Due to having a shared cache. 
»  One catch: Migrations increase both costs. 

  Quantum staggering is very effective. 
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Observations/Speculation (Cont’d) 

 No one “best” algorithm. 
  Intel has claimed they will produce an 80-

core general-purpose chip.  If they do… 
»  the cores will have to be simple ⇒ high 

execution costs ⇒ high utilizations ⇒ PEDF 
will suffer; 

»  “pure” global algorithms will not scale; 
» some instantiation of CEDF (or maybe CS-

PD2) will hit the “sweet spot”. 
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Future Work 

 Thoroughly study “how to implement shared 
queues”. 

 Repeat this study on Intel and embedded 
machines. 

 Examine mixed HRT/SRT workloads. 
 Factor in synchronization and dynamic 

behavior. 
»  In past work, PEDF was seen to be more 

negatively impacted by these things. 
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Thanks! 

 Questions? 
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SRT Tardiness, Uniform Medium 
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Measuring Overheads 

  Done using a UNC-produced tracer called 
Feather-Trace. 
»  http://www.cs.unc.edu/~bbb/feathertrace/ 

  Highest 1% of values were tossed. 
»  Eliminates “outliers”  due to non-deterministic 

behavior in Linux, warm-up effects, etc. 
  Used worst-case (average-case) values for 

HRT (SRT) schedulability. 
  Used linear regression analysis to produce 

linear (in the task count) overhead 
expressions. 
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Obtaining Kernel Overheads 

 Ran 90 (synthetic) task sets per 
scheduling algorithm for 30 sec. 

  In total, over 600 million individual 
overheads were recorded (45 GB of 
data). 
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Kernel Overheads (in µs) 
(N = no. of tasks) 

                         Worst-Case 
Alg  Tick  Schedule  Context SW  Release  
PD2  11.2 +.3N  32.7  3.1+.01N  --- 
S-PD2  4.8+.3N  43.1    3.2+.003N  --- 
GEDF  3+.003N  55.2+.26N  29.2  45+.3N 
CEDF  3.2  14.8+.01N  6.1  30.3 
PEF  2.7+.002N  8.6+.01N  14.9+.04N  4.7+.009N 

    Average 
Alg  Tick  Schedule  Context SW  Release 
PD2  4.3+.03N  4.7  2.6+.001N  --- 
S-PD2  2.1+.02N  4.2  2.5+.001N  --- 
GEDF  2.1+.002N  11.8+.06N  7.6  5.8+.1N 
CEDF  2.8  6.1+.01N  3.2  16.5 
PEDF  2.1+.002N  2.7+.008N  4.7+.005N  4+.005N 
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Obtaining Preemption/Migration 
Overheads 

  Ran 90 (synthetic) task sets per scheduling 
algorithm for 60 sec. 

  Each task has a 64K working set (WS) that it 
accesses repeatedly with a 75/25 read/write 
ratio. 

  Recorded time to access WS after 
preemption/migration minus “cache-warm 
access”. 

  In total, over 105 million individual preemption/
migration overheads were recorded (15 GB of 
data). 
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Preemption/Migration Overheads (in µs) 
(N = no. of tasks) 

                                  Worst-Case 
Alg  Overall    Preemption  Intra-Cluster Mig  Inter-Cluster Mig  
PD2  681.1    649.4   654.2   681.1 
S-PD2  104.1    103.4   103.4   104.1 
GEDF  375.4    375.4   326.8   321.1 
CEDF  171.6    171.6   167.3     --- 
PEDF  139.1    139.1     ---     --- 

                     Average 
Alg  Overall    Preemption  Intra-Cluster Mig  Inter-Cluster Mig  
PD2  172    131.4   141.8   187.6   
S-PD2  89.3    86.2   87.8   90.2 
GEDF  73    95.1   73.5   72.6 
CEDF  67    78.5   64.8     --- 
PEDF  72.3    72.3     ---     --- 



53 Real-Time Scalability 

Preemption/Migration Overheads (in µs) 
(N = no. of tasks) 

                                  Worst-Case 
Alg  Overall    Preemption  Intra-Cluster Mig  Inter-Cluster Mig  
PD2  681.1    649.4   654.2   681.1 
S-PD2  104.1    103.4   103.4   104.1 
GEDF  375.4    375.4   326.8   321.1 
CEDF  171.6    171.6   167.3     --- 
PEDF  139.1    139.1     ---     --- 

                     Average 
Alg  Overall    Preemption  Intra-Cluster Mig  Inter-Cluster Mig  
PD2  172    131.4   141.8   187.6   
S-PD2  89.3    86.2   87.8   90.2 
GEDF  73    95.1   73.5   72.6 
CEDF  67    78.5   64.8     --- 
PEDF  72.3    72.3     ---     --- 



54 Real-Time Scalability 

HRT, Uniform Light 

This is the easiest case for partitioning, 
so PEDF wins. 

S-PD2 does pretty well too. 
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HRT, Uniform Light 
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HRT, Uniform Medium 

Similar to before. 

Utilizations aren’t high enough to start 
causing problems for partitioning. 
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HRT, Uniform Medium 
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HRT, Uniform Heavy 

Utilizations are high enough to cause 
problems for partitioning. 

S-PD2 wins now. 
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HRT, Uniform Heavy 
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SRT, Uniform Light 

PEDF wins, S-PD2 performs pretty well. 
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SRT, Uniform Light 
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SRT, Uniform Medium 

CEDF really benefits from using a 
“no utilization loss” schedulability test 
within each cluster. 
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SRT, Uniform Medium 
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SRT, Uniform Heavy 

GEDF and NP-GEDF actually win in 
this case. 

CEDF and S-PD2 perform pretty well. 

PEDF loses. 
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SRT, Uniform Heavy 
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G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

partitioned EDF

2 x global EDF

2 x PFAIR

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?
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Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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S-PD2

G-NP-EDF

PD2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

“for each tested scheme, scenarios exist 
in which it is a viable choice”
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UNC’s Implementation Studies (II)

6

Brandenburg et al. (2008)
➡ What if there are many slow processors?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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G-EDF: high overheads, low schedulability.
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Today’s discussion

9

How to implement global schedulers?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.
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Today’s discussion

10

How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Instead of 
considering

one 
implementation 

of several
different 
scheduling 

algorithms…
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Today’s discussion
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How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.
➡ Case study: nine G-EDF variants on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008),  On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF G-EDF

G-EDF G-EDF

G-EDF

G-EDF G-EDF

G-EDF

G-EDF
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Design Choices
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Design Choices

13

➡ When to schedule.
➡ Quantum alignment.
➡ How to handle interrupts.
➡ How to queue pending jobs.
➡ How to manage future releases.
➡ How to avoid unnecessary preemptions.
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Scheduler Invocation
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Scheduler Invocation

15

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur 

immediately

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

release completion
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release completion

Scheduler Invocation

16

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur 

immediately

Quantum-Driven
➡ on every timer tick
➡ easier to implement
➡ on release a job is just 

enqueued; scheduler is 
invoked at next tick

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150
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Quantum Alignment

17

Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

P1

P2

5 10 150
release completion
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Quantum Alignment

18

Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.

P1

P2

5 10 150

P1

P2

5 10 150

release completion
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Quantum Alignment
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Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2

5 10 150

release completion
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Quantum Alignment

20

Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2
T x

1T y
2

T z
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2

staggering delays

5 10 150

release completion
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Quantum Alignment

21

Aligned
➡ Tick synchronized 

across processors.
➡ Contention at 

quantum boundary!

Staggered
➡ Ticks spread out 

across quantum.
➡ Reduced bus and 

lock contention.
➡ Additional latency.
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staggering delays
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Interrupt Handling
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Interrupt Handling

23

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be 

delayed by each interrupt.
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Interrupt Handling

24

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be 

delayed by each interrupt.
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Dedicated interrupt handling.
➡ Only one processor services interrupts.
➡ Jobs may execute on other processors.
➡ Jobs are not delayed by release interrupts.
➡ Well-known technique; used in the Spring 

kernel (Stankovic and Ramamritham, 1991).
➡ How does it affect schedulability?

J.A. Stankovic and K. Ramamritham (1991), The Spring kernel: A new paradigm for real-time systems. IEEE Software, 8(3):62–72.
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Ready Queue
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Ready Queue

26

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.
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Ready Queue

27

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

Requirements.
➡ Mergeable priority queue: release n 

jobs in O(log n) time.
➡ Parallel enqueue / dequeue operations.
➡ Mostly cache-local data structures.
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Ready Queue

28

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.	


➡ Problem: lock contention.
➡ Problem: bus contention.

P1 P2

…

P32

Coarse-Grained  Heap Hierarchical Heaps Fine-Grained Heap

In this study, we consider three queue implementations.
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Ready Queue: Coarse-Grained Heap

29

Binomial heap + single lock.
➡ Lock used to synchronize all G-EDF state.
➡ Mergeable queue.
➡ No parallel updates.
➡ No cache-local updates.
➡ Low locking overhead 

(only single lock acquisition).
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Ready Queue: Hierarchical Heaps

30

P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.
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Ready Queue: Hierarchical Heaps
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P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

Locking.
➡ Dequeue: top-down.
➡ Enqueue: bottom-up.
➡ Enqueue may have to 

drop lock, retry.
➡ Additional complexity 

wrt. dequeue (see paper).
➡ Bottom line: expensive.
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Ready Queue: Fine-Grained Heap

32

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.
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Ready Queue: Fine-Grained Heap

33

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Locking.
➡ Many lock acquisitions.
➡ Atomic peek+dequeue 

operation needed to check for 
preemptions.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.
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Additional Components

34

Release queue.
➡ Support mergeable queues.
➡ Support dedicated interrupt handling.

Job-to-processor mapping.
➡ Quickly determine whether preemption is required.
➡ Avoid unnecessary preemptions.
➡ Used to linearize concurrent scheduling decisions.
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Implementation in LITMUSRT

35
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Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems
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Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.
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Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

Scheduler Plugin API.
➡ scheduler_tick()
➡ schedule()
➡ release_jobs()
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Considered G-EDF Variants

39

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

FEm fine-grained event-driven global

HEm hierarchical event-driven global

S-CQm coarse-grained quantum (staggered) global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated
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Considered G-EDF Variants

40

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated
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Considered G-EDF Variants
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Baseline from
(Brandenburg et al., 2008)
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Considered G-EDF Variants
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

No fine-grained heaps + quantum-driven scheduling.
(Parallel updates not beneficial due to quantum barrier.)
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Considered G-EDF Variants
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated
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Considered G-EDF Variants
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Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

No hierarchical heaps + dedicated interrupt handling.
(Hierarchical heaps not beneficial if only one proc. enqueues.)
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Schedulability Study
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Objective

46

Compare the discussed implementations
in terms of the ratio of randomly-generated task sets

that can be shown to be schedulable
under consideration of system overheads.
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Scheduling Overheads
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Scheduling Overheads

48

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Context switch overhead.
➡ Changing address space.

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion
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Scheduling Overheads
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Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Tick overhead.
➡ Cost of a periodic timer interrupt.
➡ Beginning of a new quantum.

Context switch overhead.
➡ Changing address space.

Preemption and migration overhead.
➡ Loss of cache affinity.
➡ Known from (Brandenburg et al., 2008).

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion
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IPI Latency
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P1

P2 T x
1T y

2

T z
3 T y

2

IPI latency

5 10 150

Inter-processor interrupts (IPIs).
➡ Interrupt may be processed by a processor different from the one 

that will schedule a newly-arrived job.
➡ Requires notification of remote processor.
➡ Event-based scheduling incurs added latency.

release completion
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Test Platform
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LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed 

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara” 
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Test Platform
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LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed 

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara” 

0
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700

PFAIR S-PFAIR G-EDF C-EDF P-EDF

Overheads
➡ Traced overheads under each of the plugins.
➡ Collected more than 640,000,000 samples (total).
➡ Computed worst-case and average-case overheads.
➡ Over 20 graphs; see online version. 

Outliers
➡ Removed top 1% of samples to discard outliers.
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Example: Tick Overhead
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Example: Tick Overhead
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Example: Release Overhead
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Quantum-Driven

Event-Driven
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Study Setup
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Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for 

each G-EDF implementation).
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Study Setup
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Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for 

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s 

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s 

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded 

tardiness.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s 

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Tuesday, April 5, 2011



On the Implementation of Global Real-Time Schedulers

Study Setup
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Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for 

each G-EDF implementation).
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Task set generation.
➡ Six utilization distributions (uniform and bimodal).
➡ Three period distributions (uniform).
➡ Over 300 graphs; see online version.

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded 

tardiness.
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Interrupt Handling
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Dedicated

Zero Overh.Global

Dedicated interrupt handling
was generally preferable (or no worse).
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Quantum Staggering
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Staggered quanta
were generally preferable (or no worse).
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Quantum- vs. Event-Driven
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Quantum
Event

Event-driven scheduling 
was preferable in most cases.

Zero Overh.

Tuesday, April 5, 2011



On the Implementation of Global Real-Time Schedulers

Choice of Ready Queue (1)
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The coarse-grained ready queue
performed better than the hierarchical queue.
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Choice of Ready Queue (II)
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Zero O.Coarse-Grained

Fine-Grained

The fine-grained ready queue
performed marginally better than the coarse-grained queue 
if used together with dedicated interrupt handling.
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Conclusion
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Summary of Results
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Implementation choices 
can impact schedulability as much as 

scheduling-theoretic tradeoffs.

Unless task counts are very high
or periods very short,

G-EDF can scale to 32 processors.
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Recommendation
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Best results obtained with combination of:

fine-grained heap
event-driven scheduling

dedicated interrupt handling
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Future Work
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Platform.
➡ Repeat study on embedded hardware platform.

Implementation.
➡ Simplify locking requirements.
➡ Parallel mergeable heaps?

Analysis.
➡ Less pessimistic hard real-time G-EDF schedulability tests.
➡ Less pessimistic interrupt accounting.
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