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Focus of this Talk

® Multicore platforms are predicted to get
much larger in the future.

» 10s or 100s of cores per chip, multiple
hardware threads per core.

® Research Question: How will different
real-time scheduling algorithms scale?

» Scalabllity is defined w.r.t. schedulability
(more on this later).
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Outline

® Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

® Research questions addressed.
® Experimental results.

® Observations/speculation.

® Future work.
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Real-Time Workload Assumed In this Talk

® Set 7 of periodic tasks scheduled on M cores:

=S mm ! ommm wm !

One Core Here

U =(9,15)
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Real-Time Workload Assumed In this Talk

® Set 1 of periodic tasks scheduled on M cores:
» Task T =(T.e,T.p) releases a job with exec. cost T.e every
T.p time units.
— T's utilization (or weight) is U(T) = T.e/T.p.
— Total utilization is U(t) = 2, T.e/T.p.

2 5]
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One Core Here

U =(9,15)
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Real-Time Workload Assumed In this Talk

® Set 7 of periodic tasks scheduled on M cores:
ith exec. cost T.e every

T =(2,5)

U =(9,15)
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Real-Time Workload Assumed In this Talk

® Set 1 of periodic tasks scheduled on M cores:

» Task T =(T.e,T.p) releases a job with exec. cost T.e every
T.p time units.
— T’s utilization (or weight) is U(T) = T.e/T.p.
— Total utilization is U(t) = 2, T.e/T.p.

» Each job of T has a deadline at the next job release of T.

2 .5

=S mm ! ommm wm !

One Core Here

U =(9,15)
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Real-Time Workload Assumed In this Talk

® Set 1 of periodic tasks scheduled on M cores:

» Task T =(T.e,T.p) releases a job with exec. cost T.e every
T.p time units.

— T’s utilization (or weight) is U(T) = T.e/T.p.

— Total utilization is U(t) = 21 T.e/T.p.
» Each job of T ha -. the next job release of T.

2 y 5

=S mm ! ommm wm !

One Core Here

U =(9,15)

Real-Time Scalability



Real-Time Workload Assumed In this Talk

® Set 1 of penodlc tasks scheduled on M cores:

\\T —_— - [ ) ajfaps A.‘A (1 Y ) R A\

This Is an ear//est-deadlme first schedule
Much of our work pertains to EDF scheduling...

» Each job of T has a deadline at the next job release of T.

2 .5

=S mm ! ommm wm !

One Core Here

= (9,15)
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Scheduling vs. Schedulability

e \V.r.t. scheduling, we actually care about two

kinds of algorithms:

» Scheduling algorithm (of course).
— Example: Earliest-deadline-first (EDF): Jobs with earlier

deadlines have higher priority.

» Schedulability test.

Test for— Y€S
T —>

Real-Time Scalability

e

no timing requirement
will be violated if T is
scheduled with EDF

EDF ——no—

a timing requirement
will (or may) be

violated ...
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Multiprocessor Real-Time Scheduling

Two Approaches:

Partitioning Global Scheduling
Steps: Important Differences:
1. Assign tasks to processors (bin «  One task queue.

packing). Tasks may migrate among
2. Schedule tasks on each the processors.

processor using a uniprocessor

algorithm.

Real-Time Scalability
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Scheduling Algorithms Considered

e Partitioned EDF: PEDF.

® Preemptive & Non-preemptive Global
EDF: GEDF & NP-GEDF.

® Clustered EDF: CEDF.

» Partition onto clusters of cores, globally
schedule within each cluster

clusters|iciiclicl [cilliclicl [c C_}Fromother

8 cores...

L1 L1
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Scheduling Algorithms (Continued)

® PD?, a global Pfair algorithm.

» Schedule jobs one quantum at a time at a
“uniform” rate.
— May preempt and migrate jobs frequently.

® Staggered PD?: S-PD~?.

» Same as PD? but quanta are “staggered” to
avoid excessive bus contention.
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PD2 Example

3 tasks with parameters (2,3) on two processors...

On Processor 1 On Processor 2

4
T=@23) | # = el
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Schedulability

® HRT: No deadline is missed.
® SRT: Deadline tardiness is bounded.

® For some scheduling algorithms,
utilization loss is inherent when checking
schedulabillity.

» That is, schedulability cannot be
guaranteed for all task systems with total
utilization at most M.
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Example: PEDF

Example: Partitioning three tasks with parameters
(2,3) on two processors will overload one processor.

In terms of bin-packing...

Task 1

Task 2 | | Task 3

Processor 1 Processor 2
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Schedulability Summary

HRT SRT
PEDF util. loss util. loss (same as HRT)
GEDF util. loss no loss
NP-GEDF | util. loss no loss
CEDF util. loss util. loss (not as bad as PEDF)
PD2 no loss no loss
S-PD? slight loss no loss

Real-Time Scalability

(must shrink periods
by one quantum)
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GEDF SRT Example

Earlier example with GEDF...

Tardiness is at most one quantum.

JARN

T=23) 11 ] 7// “ \\“ Al |
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Outline

® Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

® Research questions addressed.
® Experimental results.

® Observations/speculation.

® Future work.
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Research Questions

® In theory, PD? is always preferable.
» |t is optimal (no utilization loss).
Focus of this Talk: An Experimental
comparison of these scheduling
algorithms on the basis of schedulabillity.

y
multicore platform with a shared cache?

® As multicore platforms get larger, will
global algorithms scale?

Real-Time Scalability



Test System

e HW platform: Sun Niagara (UltraSPARC T1).

4 HW threads \ 1.2 GHz “RISC-like”

per core o cores.

16K (8K) L1 * Relatively simple,

instr. (data) : 9-9-,dn0. instr.

cache per |1 |1 reoraering o

core or branch prediction.

Shared SMB | 12 « Caches somewhat

L2 ] small compared to
K J Intel.

— OS has 32 “logical CPUs” to manage.

— Far Iarger than any s_ystem considered before in RT literature.
— Note: CEDF “cluster” =4 HW threads on a core.

Real-Time Scalability

21



Test System (Cont'd)

® Operating System: LITMUSRT: LInux Testbed
for MUItiprocessor Scheduling in Real-Time
systems.
» Developed at UNC.

» Extends Linux by allowing different schedulers to
be linked as “plug-in” components.

» Several (real-time) synchronization protocols are
also supported.

» Code is available at http://www.cs.unc.edu/
~anderson/litmus-rt/.

Real-Time Scalability 22



Methodology

® Ran several hundred (synthetic) task sets
on the test system.

N-o_té:‘TBis.step IS offline.- It
® Distille¢does not involve the Niagara. BRT)
and worst-case

® Collect ples.

® Conducted schedulability experiments
involving 8.5 million randomly-generated
task sets with overheads considered.

Real-Time Scalability



Kinds of Overheads

® [lick scheduling overhead.
» Incurred when the kernel is invoked at the beadinning of

® Re
»

® SO
»

® Cc

»

These overheads can be accounted
for in schedulability tests by inflating
Jjob execution costs.

(Doing this correctly is a little tricky.)

® Preemption/migration overhead.
» Costs incurred upon a preemption/migration due to a loss

of cache affinity.
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Kernel Overheads

® Most overheads were small (2-15us) except
worst-case overheads impacted by global
queues.

» Most notable: Worst-case scheduling overheads
for PD?, S-PD?4, and GEDF/NP-GEDF:

Alg Scheduling Overhead (in us)
PD? 32.7
S-PD? 43.1
GEDF/NP-GEDF | 55.2+.26N (N = no. of tasks)
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Preemption/Migration Overheads

® Obtained by measuring synthetic tasks, each
with a 64K working set & 75/25 read/write ratio.

» Interesting trends: PD? is terrible, staggering really
helps, preempt. cost = mig. cost per algorithm, but
algorithms that migrate have higher costs.

Worst-Case Overheads (in us)

Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1

S-PD?2 | 104.1 103.4 103.4 104 .1

GEDF | 3754 375.4 326.8 321.1

CEDF | 171.6 171.6 167.3 -

PEDF | 139.1 139.1 -

Real-Time Scalability 26



Schedulability Results

® Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).

» 8.5 million task sets in total.

® Distributions:

» Utilizations uniform over
— [0.001,01] (light),
—[0.1,0.4] (medium), and
— [0.5,09] (heavy).
» Bimodal with utilizations distributed over either
[0.001,05) or [0.5,09] with probabilities of
— 8/9 and 1/9 (light),
— 6/9 and 3/9 (medium), and
— 4/9 and 5/9 (heavy).
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Schedulability Results

® Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).

» 8.5 million task sets in total.

® Distributions:

» Utilizations uniform over
— [0.001,01] (light),
—[0.1,0.4] (medium), and
— [0.5,09] (heavy).

» Bimodal with utilizations distributed over either

[0.001,05) or [0.5,09] with probabilities of

— 8/9 and 1/9 (light),

— 6/9 and 3/9 (medium), and
— 4/9 and 5/9 (heavy).

will only show graphs
for these
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HRT Summary

e PEDF usually wins.

» Exception: Lots of heavy tasks (makes bin-packing
hard).

® S-PD? usually does well.
» Staggering has an impact.

e PD? and GEDF are quite poor.
» PD? is negatively impacted by high preemption and
migration costs due to aligned quanta.

» GEDF suffers from high scheduling costs (due to
the global queue).

Real-Time Scalability 29



HRT, Bimodal Light

bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)

1 = LI I II_ ". 'IE 'Iillllllllyll ||4,J, derprapriaermpopmnumomnmumopomnomommmnommnmnn
,,'I%»
0.8 F = 2 \

: « PEDF péforms pretty well if most
E |task utilizations are low.
1S-PD2 performs pretty well too.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF wmmmm=  C-EDF G-EDF i PFAIR i S-PFAIR
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HRT, Bimodal Light

bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)
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HRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)

1 1 1
1 F o |
,,,,,,,,
r
I'r,’
= “
0.8 F = 2
A

z|n this and:the next slide, as the
fraction of heavy tasks grows, the gap
between S-PD?Z and PEDF narrows.

= ',
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF  — C-EDF G-EDF mmninn PFAIR i S-PFAIR
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HRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)
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HRT, Bimodal Heavy

bimodally distributed in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9)
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SRT Summary

® PEDF is not as effective as before, but
still OK in light-mostly cases.

® CEDF performs the best in most cases.
® S-PD? still performs generally well.

® GEDF is still negatively impacted by
higher scheduling costs.

» Note: SRT schedulability for GEDF entails
no utilization loss.

» NP-GEDF and GEDF are about the same.
® Note: The scale is different from before.
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SRT, Bimodal Light

bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)

1 [ U-l-f-..l.l;}% Y,‘l:r Al nEaETan TnT.Cmm..\
PEDF and CEDF perform well if tasks
are mostly light.

Note: S-PD? never performs really badly
INn any experiment.

22 24 26 28 30 32
utilization cap

P-EDF G-EDF uininm S-PFAIR

C-EDF PFAIR i G-NP-EDF
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SRT, Bimodal Light
bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)
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SRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)
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This and the nekt slide show that as the
frequency of heavy tasks increases,
PEDF degrades. CEDF isn't affected

by this increase much.
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P-EDF o G-EDF i S-PFAIR

C-EDF PFAIR i G-NP-EDF
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SRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)
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SRT, Bimodal Heavy

0.8

o
o

0.4

schedulability

0.2

Real-Time Scalability

bimodally distributed in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9)

22

24

P-EDF s
C-EDF wunnnnm

26 28
utilization cap

G-EDF i
PFAIR i

30 32

S-PFAIR
G-NP-EDF
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Outline

® Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

® Research questions addressed.
® Experimental results.

® Observations/speculation.

® Future work.
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Observations/Speculation

® Global algorithms are really sensitive to how
shared queues are implemented.

» Saw 100X performance improvement by switching
from linked lists to binomial heaps.

» Still working on this...

» Speculation: Can reduce GEDF costs to close to
PEDF costs for systems with < 32 cores.

® Per algorithm, preempt. cost = mig. cost.

» Due to having a shared cache.
» One catch: Migrations increase both costs.

® Quantum staggering is very effective.
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Observations/Speculation (Cont'd)

® No one “best” algorithm.

® Intel has claimed they will produce an 80-
core general-purpose chip. If they do...

» the cores will have to be simple = high
execution costs = high utilizations = PEDF
will suffer:

» “pure” global algorithms will not scale;

» some instantiation of CEDF (or maybe CS-
PD?) will hit the “sweet spot”.
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Future Work

® Thoroughly study “how to implement shared
queues’.

® Repeat this study on Intel and embedded
machines.

® Examine mixed HRT/SRT workloads.

® Factor in synchronization and dynamic
behavior.

» In past work, PEDF was seen to be more
negatively impacted by these things.
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Thanks!

® Questions?

Real-Time Scalability
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SRT Tardiness, Uniform Medium

uniformly distributed in [0.1, 0.4]
400 1 1 1 1 I | | 1 1 1 1 I | | 1 1

350 F

300 F

250 F

200 F

150 f

tardiness (in ms)

100 f

1
I||II\I|\|||II|IIlI||II||

50 F

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

C-EDF v G-EDF G-NP-EDF 1
Real-Time Scalability
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Measuring Overheads

® Done using a UNC-produced tracer called
Feather-Trace.
» http://www.cs.unc.edu/~bbb/feathertrace/

® Highest 1% of values were tossed.
» Eliminates “outliers” due to non-deterministic
behavior in Linux, warm-up effects, etc.
® Used worst-case (average-case) values for
HRT (SRT) schedulability.

® Used linear regression analysis to produce
linear (in the task count) overhead
expressions.
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Obtaining Kernel Overheads

® Ran 90 (synthetic) task sets per
scheduling algorithm for 30 sec.

® In total, over 600 million individual
overheads were recorded (45 GB of
data).
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Kernel Overheads (in us)
(N = no. of tasks)

Worst-Case
Alg Tick Schedule Context SW  Release
PD? 11.2 +.3N 32.7 3.1+.01N -
S-PD? 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

Average

Alg Tick Schedule Context SW  Release
PD? 4.3+.03N 4.7 2.6+.001N e
S-PD? 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N

Real-Time Scalability
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Kernel Overheads (in us)
(N = no. of tasks)

Worst-Case
Alg Tick Schedule Context SW  Release
PD? 11.2 +.3N 32.7 3.1+.01N -
S-PD? 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

Average

Alg Tick Schedule Context SW  Release
PD? 4.3+.03N 4.7 2.6+.001N e
S-PD? 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N
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Obtaining Preemption/Migration
Overheads

® Ran 90 (synthetic) task sets per scheduling
algorithm for 60 sec.

® Each task has a 64K working set (WS) that it
accesses repeatedly with a 75/25 read/write
ratio.

® Recorded time to access WS after
preemption/migration minus “cache-warm
access’.

® In total, over 105 million individual preemption/
migration overheads were recorded (15 GB of
data).
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Preemption/Migration Overheads (in us)

(N = no. of tasks)

Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 681.1 649.4 654.2 681.1
S-PD?2 | 104.1 103.4 103.4 104 .1
GEDF | 3754 375.4 326.8 321.1
CEDF | 171.6 171.6 167.3
PEDF | 139.1 139.1 e

Average

Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 172 131.4 141.8 187.6
S-PD?2 | 89.3 86.2 87.8 90.2
GEDF | 73 95.1 73.5 72.6
CEDF | 67 78.5 64.8
PEDF | 72.3 72.3 -—-

Real-Time Scalability
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Preemption/Migration Overheads (in us)

(N = no. of tasks)

Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 681.1 649.4 654.2 681.1
S-PD?2 | 104.1 103.4 103.4 104 .1
GEDF | 3754 375.4 326.8 321.1
CEDF | 171.6 171.6 167.3
PEDF | 139.1 139.1 e

Average

Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 172 131.4 141.8 187.6
S-PD?2 | 89.3 86.2 87.8 90.2
GEDF | 73 95.1 73.5 72.6
CEDF | 67 78.5 64.8
PEDF | 72.3 72.3 -—-
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HRT, Uniform Light

uniformly distributed in [0.001, 0.1]
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08 fF = = \

This is -thezeasiest case for partitioning,
so PEDF wins.

S-PD? does pretty well too.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF wmsssm  C-EDF G-EDF i PFAIR i S-PFAIR
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HRT, Uniform Light

uniformly distributed in [0.001, 0.1]
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HRT, Uniform Medium

uniformly distributed in [0.1, 0.4]
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Similar to before.

Utilizations aren’t high enough to start
causing problems for partitioning.
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HRT, Uniform Medium

uniformly distributed in [0.1, 0.4]
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HRT, Uniform Heavy

uniformly distributed in [0.5, 0.9]

| | 1 | | 1 | 1 | 1 1 |
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Utilizations are higH enough to cause
problems for partitioning.

S-PD? wins now.
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HRT, Uniform Heavy

uniformly distributed in [0.5, 0.9]
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SRT, Uniform Light

uniformly distributed in [0.001, 0.1]
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SRT, Uniform Light

uniformly distributed in [0.001, 0.1]
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SRT, Uniform Medium

uniformly distributed in [0.1, 0.4]
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CEDF really; benefits from using a
“no utilization loss” schedulabillity test
within each cluster.
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SRT, Uniform Medium

uniformly distributed in [0.1, 0.4]
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SRT, Uniform Heavy

uniformly distributed in [0.5, 0.9]
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GEDF and NP-GEDF actually win in
this case.

cechediilahilitv

CEDF and S-PD? perform pretty well.

PEDF loses.
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SRT, Uniform Heavy
uniformly distributed in [0.5, 0.9]
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On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

Calandrino et al. (2006)
= Are commonly-studied RT schedulers implementable!?
= |n Linux on common hardware platforms?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages | 1 1—-123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

Calandrino et al. (2006)
= Are commonly-studied RT schedulers implementable!?
= |n Linux on common hardware platforms?

Intel 4x 2.7 GHz Xeon SMP

(few, fast processors; private caches)

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages | 1 1—-123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

Calandrino et al. (2006)
= Are commonly-studied RT schedulers implementable!?
= |n Linux on common hardware platforms?

partitioned EDF

G-NP-EDF

2 x global EDF

PD?2
2 x PFAIR

S-PD?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

“for each tested scheme, scenarios exist
in which it is a viable choice”

Calandrino
= Are commc
= |n Linux on ¢

G-NP-EDF

PD?2

S-PD?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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UNC’s Implementation Studies (ll)

Brandenburg et al. (2008)
= What if there are many slow processors!
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On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (ll)

Brandenburg et al. (2008)
= What if there are many slow processors!
= Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (ll)

Brandenburg et al. (2008)
= What if there are many slow processors!
= Explored scalability of RT schedulers on a Sun Niagara.

G-EDF: high overheads, low schedulability.

= @ ® ™ -
ol le
HEOEEEEEEEEEEEEEE S-PD?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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On the Implementation of Global Real-Time Schedulers

Today’s discussion

How to implement global schedulers?
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On the Implementation of Global Real-Time Schedulers

Today’s discussion

How to implement global schedulers?
= Explore how implementation tradeoffs affect schedulability.

QEEE EEEE EEEE QEEE
@ @ @ @ Instead of
. . m m considering
one

implementation
of several
different
scheduling
algorithms...

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages | 1 1—-123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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On the Implementation of Global Real-Time Schedulers

Today’s discussion

How to implement global schedulers?
= Explore how implementation tradeoffs affect schedulability.
= Case study: nine G-EDF variants on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time S bosium, page .
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.
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On the Implementation of Global Real-Time Schedulers

Design Choices
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On the Implementation of Global Real-Time Schedulers

Design Choices

= When to schedule.

= Quantum alignment.

= How to handle interrupts.

= How to queue pending jobs.

= How to manage future releases.

= How to avoid unnecessary preemptions.
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On the Implementation of Global Real-Time Schedulers

Scheduler Invocation
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On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

Event-Driven }
= on job release P T3 isz
= on job completion ! i
. jrﬂ/ ilﬂr
= preemptions occur Py  n
immediately

0

T release T completion
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On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

Event-Driven

= on job release

= on job completion

= preemptions occur
immediately

Quantum-Driven

= on every timer tick

= easier to implement

= on release a job is just
enqueued; scheduler is
invoked at next tick

Tuesday, April 5, 2011
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On the Implementation of Global Real-Time Schedulers

Quantum Alignment

Alighed A

= Tick synchronized P,
across processors.

= Contention at %
quantum boundary! |

15

T release -‘- completion
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On the Implementation of Global Real-Time Schedulers

Quantum Alignment

Staggered A

= Ticks spread out Py
across quantum.

= Reduced bus and Ps
lock contention.

= Additional latency.

Aligned

= Tick synchronized P,
across processors.

= Contention at %
quantum boundary! |

15

T release T completion

Tuesday, April 5, 2011



On the Implementation of Global Real-Time Schedulers

Quantum Alignment

Staggered A

= Ticks spread out Py
across quantum.

= Reduced bus and Ps
lock contention.

= Additional latency.

partially-used quantum

Aligned )
= Tick synchronized P il Iy i

ACross processors.
TCB
= Contention at P I i
N T T Y Y A
10 15

I release T completion

quantum boundary!
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On the Implementation of Global Real-Time Schedulers

Quantum Alignment

staggering delays
Staggered A )
= Ticks spread out Py T T3 ) } I T
across quantum. I‘—‘ I =Nl
-~ Reduced busand 12 I
lock contention. Lo Ly
= Additional latency. 0 3 10

partially-used quantum

Aligned }
= Tick synchronized P Il Ty i

ACross processors.
TCB
= Contention at P B i
N T T Y Y A
10 15

I release T completion

quantum boundary!
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On the Implementation of Global Real-Time Schedulers

Quantum Alignment

staggering delays

Staggered A

= Ticks spread out Py T
across quantum.

= Reduced bus and P
lock contention.

= Additional latency.

partially used quantum

Aligned | |
= Tick synchronized P

across processors. P .Tl_i |
= Contention at 2 1
quantum boundary! | II | |

10

I release T completion
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Interrupt Handling
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On the Implementation of Global Real-Time Schedulers

Interrupt Handling

Global interrupt handling.

= Job releases triggered by interrupts.

= Interrupts may fire on any processor.

= Jobs may execute = - oo

= Thus, in the worst case, a job may be
delayed by each interrupt.
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On the Implementation of Global Real-Time Schedulers

Interrupt Handling

PSP Global interrupt handling.
@ @ = Job releases triggered by interrupts.
= Interrupts may fire on any processor

= Jobs may execute = -~ oo

= Thus, in the worst case, a ]Ob may be
@ 0 delayed by each interrupt.

®®®®®®@®®®@®9®9 Dedicated interrupt handling.
° @ = Only one processor services interrupts.
= Jobs may execute -~ o oo

= Jobs are not delayed by release mterrupts

= Well-known technique; used in the Spring
@ @ kernel (Stankovic and Ramamritham, 1991).
eee@ FOER eeeeeeee = How does it affect schedulability!?

J.A. Stankovic and K. Ramamritham (1991),The Spring kernel: A new paradigm for real-time systems. I[EEE Software, 8(3):62-72.

Tuesday, April 5, 2011
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Ready Queue
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On the Implementation of Global Real-Time Schedulers

Ready Queue

Globally-shared priority queue.

= Problem: hyper-period boundaries.
= Problem: lock contention.

= Problem: bus contention.
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On the Implementation of Global Real-Time Schedulers

Ready Queue

Globally-shared priority queue.

= Problem: hyper-period boundaries.
= Problem: lock contention.

= Problem: bus contention.

Requirements.

= Mergeable priority queue: release n
jobs in O(log n) time.

= Parallel enqueue / dequeue operations.

= Mostly cache=-local data structures.
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On the Implementation of Global Real-Time Schedulers

Ready Queue

Globally-shared priority queue.

= Problem: hyper-period boundaries.
= Problem: lock contention.

= Problem: bus contention.

In this study, we consider three queue implementations.

Coarse-Grained Heap Hierarchical Heaps Fine-Grained Heap
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Ready Queue: Coarse-Grained Heap

Binomial heap + single lock.
= Lock used to synchronize all G-EDF state.
= Mergeable queue.
= No parallel updates.
= No cache-local updates.
= Low locking overhead
(only single lock acquisition).
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Ready Queue: Hierarchical Heaps

Per-processor queues + master queue.
= Fach queue protected by a lock.
= Master queue holds min element of each per-

processor queue.
= Global, sequential dequeue operations. .~
= Mostly-local enqueue operations. "
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On the Implementation of Global Real-Time Schedulers

Ready Queue: Hierarchical Heaps

Per-processor queues + master queue.

= Fach queue protected by a lock.

= Master queue holds min element of each per-
processor queue.

= Global, sequential dequeue operations.

= Mostly-local enqueue operations. |

Locking.

= Dequeue: top-down.

= Enqueue: bottom-up.

= Enqueue may have to
drop lock, retry.

= Additional complexity
wrt. dequeue (see paper).

= Bottom line: expensive.

Tuesday, April 5, 2011



On the Implementation of Global Real-Time Schedulers

Ready Queue: Fine-Grained Heap

Parallel binary heap.

= One lock per heap node.

= Proposed by Hunt et al. (1996).

= Not mergeable.

= Parallel enqueue / dequeue.
= No cache-local data.

Hunt et al. (1996),An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151—-157.
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Ready Queue: Fine-Grained Heap

Parallel binary heap.

= One lock per heap node.

= Proposed by Hunt et al. (1996).

= Not mergeable.

= Parallel enqueue / dequeue.
= No cache-local data.

Locking.

= Many lock acquisitions.

= Atomic peek+dequeue
operation needed to check for
preemptions.

Hunt et al. (1996),An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151—-157.
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On the Implementation of Global Real-Time Schedulers

Additional Components

Release queue.
= Support mergeable queues.
= Support dedicated interrupt handling.

Job-to-processor mapping.
= Quickly determine whether preemption is required.
= Avoid unnecessary preemptions.

= Used to linearize concurrent scheduling decisions.
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Implementation in LITMUSRT
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On the Implementation of Global Real-Time Schedulers

LITMUSR'

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems
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On the Implementation of Global Real-Time Schedulers

LITMUS™!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNCOC’s Linux patch.
= Used in several previous studies.

= On-going development.
= Currently, based off of Linux 2.6.24.
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On the Implementation of Global Real-Time Schedulers

LITMUS™!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNCOC’s Linux patch. Scheduler Plugin APIL.
= Used in several previous studies. = scheduler_tick()

= On-going development. = schedule()
= Currently, based off of Linux 2.6.24. = release jobs ()

Tuesday, April 5, 2011
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Considered G-EDF Variants

Name

Ready Q

Scheduling

Interrupts
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Considered G-EDF Variants

Ready Q Scheduling |Interrupts

coarse-grained

coarse-grainead

coarse-grainea

hierarchical

Tuesday, April 5, 2011



On the Implementation of Global Real-Time Schedulers

Baseline from
Brandenburg et al., 2008) nts

Ready Q Scheduling |Interrupts

coarse-grained

coarse-grainead

coarse-grainea

hierarchical
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On tha Imnlamantatian nf Glahal Ranl.Tima Schadilarc

No fine-grained heaps + quantum-driven scheduling.
(Parallel updates not beneficial due to quantum barrier.)

Name

Ready Q

CEm

coarse-grainec

COm

coarse-grainec

S-COm

coarse-grainea

HEm
FEmM

hierarchical

Scheduling

Interrupts
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On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

Name

Ready Q

Scheduling

Interrupts

CEm

coarse-grainec

COm

coarse-grainec

S-COm

coarse-grainec

HEm

hierarchical

event-driven

event-driven

globa

globa

globa

global

FEmM

fine-grained

event-driven

global

CEl

coarse-grainec

CQl

coarse-grainec

S-CQI

coarse-grainec

FEI

fine-grained

event-driven

event-driven

edicatec

edicatec

edicatec

edicatec
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On tha Imnlamantatian nf Glahal Ranl . Tima Schadilarc

No hierarchical heaps + dedicated interrupt handling.
(Hierarchical heaps not beneficial it only one proc. engueues.)

Name

Ready Q

Scheduling

Interrupts

CEm

coarse-grained

COm

coarse-grainead

S-COm

coarse-grainea

HEm

event-driven

globa

globa

globa

hierarchical event-driven global |

FEmM

fine-grained

event-driven

global

CEl

coarse-grainead

CQl

coarse-grainea

S-CQI

coarse-grainec

FEI

fine-grained

event-driven

event-driven

edicatec

edicatec

edicatec

edicatec
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Schedulability Study
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On the Implementation of Global Real-Time Schedulers

Objective

Compare the discussed implementations
in terms of the ratio of randomly-generated task sets
that can be shown to be schedulable
under consideration of system overheads.
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Scheduling Overheads
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Scheduling Overheads

Release overhead.
= The cost of a one-shot timer interrupt.

Scheduling overhead.

release

schedule context switch

= Selecting the next job to run.

Context switch overhead.
= Changing address space.

Tuesday, April 5, 2011
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On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

Release overhead.
= The cost of a one-shot timer interrupt.

Scheduling overhead.

release

schedule context switch

= Selecting the next job to run.

Context switch overhead.
= Changing address space.

\Wran

r(s|C

Tick overhead.
= Cost of a periodic timer interrupt.
= Beginning of a new quantum.

Preemption and migration overhead.

= Loss of cache affinity.

= Known from (Brandenburg et al., 2008).

Tuesday, April 5, 2011
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On the Implementation of Global Real-Time Schedulers

IPlI Latency

Inter-processor interrupts (IPls).

= Interrupt may be processed by a processor different from the one
that will schedule a newly-arrived job.

= Requires notification of remote processor.

= Event-based scheduling incurs added latency.

| IPI latency |

15

I release T completion
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On the Implementation of Global Real-Time Schedulers

Test Platform

LITMUSRT
= [JNC’s Linux-based Real-Time Testbed

~

f L
Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Sun UltraSPARC T1 “Niagara”
= 8 cores, 4 HWV threads per core = 32 logical processors.

= 3 MB shared L2 cache

— SUN UltraSPARC T | “Niagara”
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Test Platform

LITMUSRT
= [JNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
= 8 cores, 4 HWV threads per core = 32 logical processors.
= 3 MB shared L2 cache

Overheads

= Traced overheads under each of the plugins.

= Collected more than 640,000,000 samples (total).
= Computed worst-case and average-case overheads.
= Over 20 graphs; see online version.

Outliers
= Removed top |% of samples to discard outliers.
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Example: Tick Overhead

A
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“Higher is worse.”
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Example: Tick Overhead

worst-case tick overhead

Quantum-Driven
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Example: Release Overhead

worst-case release overhead

Eveni-Driven
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Study Setup

Methodology.

= Randomly generate task set.

= Apply overheads (for each G-EDF implementation).

= Test whether task set can be claimed schedulable (for
each G-EDF implementation).
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Study Setup

Methodology.

= Randomly generate task set.

= Apply overheads (for each G-EDF implementation).

= Test whether task set can be claimed schedulable (for
each G-EDF implementation).

Schedulability.

= Hard real-time: worst-case overheads, no tardiness.

= Soft real-time: average-case overheads, bounded
tardiness.
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Tuesday, April 5, 2011

Study Setup

Methodology.

= Randomly generate task set.

= Apply overheads (for each G-EDF implementation).

= Test whether task set can be claimed schedulable (for
each G-EDF implementation).

Schedulability.

= Hard real-time: worst-case overheads, no tardiness.

= Soft real-time: average-case overheads, bounded
tardiness.

Task set generation.

= Six utilization distributions (uniform and bimodal).
= Three period distributions (uniform).

= Over 300 graphs; see online version.
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Results
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“Higher is better.”
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Interrupt Handling

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
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Dedicated interrupt handling
was generally preferable (or no worse).
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Quantum Staggering

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]
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Staggered quanta
were generally preferable (or no worse).
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Quantum- vs. Event-Driven

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
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Event-driven scheduling
was preferable in most cases.
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Choice of Ready Queue (I)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
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The coarse-grained ready queve
performed better than the hierarchical queue.
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Choice of Ready Queue (ll)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]
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The fine-grained ready queue
performed marginally better than the coarse-grained queue
if used together with dedicated interrupt handling.
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Conclusion
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Summary of Results

Implementation choices
can impact schedulability as much as
scheduling-theoretic tradeoffs.

Unless task counts are very high
or periods very short,
G-EDF can scale to 32 processors.
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Recommendation

Best results obtained with combination of:

fine-grained heap
event-driven scheduling
dedicated interrupt handling

e )
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Future Work

Platform.
= Repeat study on embedded hardware platform.

Implementation.
= Simplify locking requirements.
= Parallel mergeable heaps?

Analysis.
= Less pessimistic hard real-time G-EDF schedulability tests.

= | ess pessimistic interrupt accounting.
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