On the Scalability of Real-Time
Scheduling Algorithms on
Multicore Platforms: A Case Study

Sathish Gopalakrishnan

The University of British Columbia
(based on work by others at the University of North Carolina)

Real-Time Scalability

Focus of this Talk

® Multicore platforms are predicted to get
much larger in the future.

» 10s or 100s of cores per chip, multiple
hardware threads per core.

® Research Question: How will different
real-time scheduling algorithms scale?

» Scalabllity is defined w.r.t. schedulability
(more on this later).

Real-Time Scalability

Outline

® Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

® Research questions addressed.
® Experimental results.

® Observations/speculation.

® Future work.

Real-Time Scalability

Real-Time Workload Assumed In this Talk

® Set 7 of periodic tasks scheduled on M cores:

=S mm ! ommm wm !

One Core Here

U =(9,15)

Real-Time Scalability 4

Real-Time Workload Assumed In this Talk

® Set 1 of periodic tasks scheduled on M cores:
» Task T =(T.e,T.p) releases a job with exec. cost T.e every
T.p time units.
— T's utilization (or weight) is U(T) = T.e/T.p.
— Total utilization is U(t) = 2, T.e/T.p.

2 5]

=S mm ! ommm wm !

One Core Here

U =(9,15)

Real-Time Scalability

Real-Time Workload Assumed In this Talk

® Set 7 of periodic tasks scheduled on M cores:
ith exec. cost T.e every

T =(2,5)

U =(9,15)

Real-Time Scalability

Real-Time Workload Assumed In this Talk

® Set 1 of periodic tasks scheduled on M cores:

» Task T =(T.e,T.p) releases a job with exec. cost T.e every
T.p time units.
— T’s utilization (or weight) is U(T) = T.e/T.p.
— Total utilization is U(t) = 2, T.e/T.p.

» Each job of T has a deadline at the next job release of T.

2 .5

=S mm ! ommm wm !

One Core Here

U =(9,15)

Real-Time Scalability

Real-Time Workload Assumed In this Talk

® Set 1 of periodic tasks scheduled on M cores:

» Task T =(T.e,T.p) releases a job with exec. cost T.e every
T.p time units.

— T’s utilization (or weight) is U(T) = T.e/T.p.

— Total utilization is U(t) = 21 T.e/T.p.
» Each job of T ha -. the next job release of T.

2 y 5

=S mm ! ommm wm !

One Core Here

U =(9,15)

Real-Time Scalability

Real-Time Workload Assumed In this Talk

® Set 1 of penodlc tasks scheduled on M cores:

\\T —_— - [) ajfaps A.‘A (1 Y) R A\

This Is an ear//est-deadlme first schedule
Much of our work pertains to EDF scheduling...

» Each job of T has a deadline at the next job release of T.

2 .5

=S mm ! ommm wm !

One Core Here

= (9,15)

Real-Time Scalability 9

Scheduling vs. Schedulability

e \V.r.t. scheduling, we actually care about two

kinds of algorithms:

» Scheduling algorithm (of course).
— Example: Earliest-deadline-first (EDF): Jobs with earlier

deadlines have higher priority.

» Schedulability test.

Test for— Y€S
T —>

Real-Time Scalability

e

no timing requirement
will be violated if T is
scheduled with EDF

EDF ——no—

a timing requirement
will (or may) be

violated ...

10

Multiprocessor Real-Time Scheduling

Two Approaches:

Partitioning Global Scheduling
Steps: Important Differences:
1. Assign tasks to processors (bin « One task queue.

packing). Tasks may migrate among
2. Schedule tasks on each the processors.

processor using a uniprocessor

algorithm.

Real-Time Scalability

1

Scheduling Algorithms Considered

e Partitioned EDF: PEDF.

® Preemptive & Non-preemptive Global
EDF: GEDF & NP-GEDF.

® Clustered EDF: CEDF.

» Partition onto clusters of cores, globally
schedule within each cluster

clusters|iciiclicl [cilliclicl [c C_}Fromother

8 cores...

L1 L1

Real-Time Scalability

Scheduling Algorithms (Continued)

® PD?, a global Pfair algorithm.

» Schedule jobs one quantum at a time at a
“uniform” rate.
— May preempt and migrate jobs frequently.

® Staggered PD?: S-PD~?.

» Same as PD? but quanta are “staggered” to
avoid excessive bus contention.

Real-Time Scalability 13

PD2 Example

3 tasks with parameters (2,3) on two processors...

On Processor 1 On Processor 2

4
T=@23) | # = el

Real-Time Scalability 14

Schedulability

® HRT: No deadline is missed.
® SRT: Deadline tardiness is bounded.

® For some scheduling algorithms,
utilization loss is inherent when checking
schedulabillity.

» That is, schedulability cannot be
guaranteed for all task systems with total
utilization at most M.

Real-Time Scalability 15

Example: PEDF

Example: Partitioning three tasks with parameters
(2,3) on two processors will overload one processor.

In terms of bin-packing...

Task 1

Task 2 | | Task 3

Processor 1 Processor 2

Real-Time Scalability

Schedulability Summary

HRT SRT
PEDF util. loss util. loss (same as HRT)
GEDF util. loss no loss
NP-GEDF | util. loss no loss
CEDF util. loss util. loss (not as bad as PEDF)
PD2 no loss no loss
S-PD? slight loss no loss

Real-Time Scalability

(must shrink periods
by one quantum)

17

GEDF SRT Example

Earlier example with GEDF...

Tardiness is at most one quantum.

JARN

T=23) 11] 7// “ \\“ Al |

Real-Time Scalability 18

Outline

® Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

® Research questions addressed.
® Experimental results.

® Observations/speculation.

® Future work.

Real-Time Scalability 19

Research Questions

® In theory, PD? is always preferable.
» |t is optimal (no utilization loss).
Focus of this Talk: An Experimental
comparison of these scheduling
algorithms on the basis of schedulabillity.

y
multicore platform with a shared cache?

® As multicore platforms get larger, will
global algorithms scale?

Real-Time Scalability

Test System

e HW platform: Sun Niagara (UltraSPARC T1).

4 HW threads \ 1.2 GHz “RISC-like”

per core o cores.

16K (8K) L1 * Relatively simple,

instr. (data) : 9-9-,dn0. instr.

cache per |1 |1 reoraering o

core or branch prediction.

Shared SMB | 12 « Caches somewhat

L2] small compared to
K J Intel.

— OS has 32 “logical CPUs” to manage.

— Far Iarger than any s_ystem considered before in RT literature.
— Note: CEDF “cluster” =4 HW threads on a core.

Real-Time Scalability

21

Test System (Cont'd)

® Operating System: LITMUSRT: LInux Testbed
for MUItiprocessor Scheduling in Real-Time
systems.
» Developed at UNC.

» Extends Linux by allowing different schedulers to
be linked as “plug-in” components.

» Several (real-time) synchronization protocols are
also supported.

» Code is available at http://www.cs.unc.edu/
~anderson/litmus-rt/.

Real-Time Scalability 22

Methodology

® Ran several hundred (synthetic) task sets
on the test system.

N-o_té:‘TBis.step IS offline.- It
® Distille¢does not involve the Niagara. BRT)
and worst-case

® Collect ples.

® Conducted schedulability experiments
involving 8.5 million randomly-generated
task sets with overheads considered.

Real-Time Scalability

Kinds of Overheads

® [lick scheduling overhead.
» Incurred when the kernel is invoked at the beadinning of

® Re
»

® SO
»

® Cc

»

These overheads can be accounted
for in schedulability tests by inflating
Jjob execution costs.

(Doing this correctly is a little tricky.)

® Preemption/migration overhead.
» Costs incurred upon a preemption/migration due to a loss

of cache affinity.

Real-Time Scalability 24

Kernel Overheads

® Most overheads were small (2-15us) except
worst-case overheads impacted by global
queues.

» Most notable: Worst-case scheduling overheads
for PD?, S-PD?4, and GEDF/NP-GEDF:

Alg Scheduling Overhead (in us)
PD? 32.7
S-PD? 43.1
GEDF/NP-GEDF | 55.2+.26N (N = no. of tasks)

Real-Time Scalability 25

Preemption/Migration Overheads

® Obtained by measuring synthetic tasks, each
with a 64K working set & 75/25 read/write ratio.

» Interesting trends: PD? is terrible, staggering really
helps, preempt. cost = mig. cost per algorithm, but
algorithms that migrate have higher costs.

Worst-Case Overheads (in us)

Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1

S-PD?2 | 104.1 103.4 103.4 104 .1

GEDF | 3754 375.4 326.8 321.1

CEDF | 171.6 171.6 167.3 -

PEDF | 139.1 139.1 -

Real-Time Scalability 26

Schedulability Results

® Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).

» 8.5 million task sets in total.

® Distributions:

» Utilizations uniform over
— [0.001,01] (light),
—[0.1,0.4] (medium), and
— [0.5,09] (heavy).
» Bimodal with utilizations distributed over either
[0.001,05) or [0.5,09] with probabilities of
— 8/9 and 1/9 (light),
— 6/9 and 3/9 (medium), and
— 4/9 and 5/9 (heavy).

Real-Time Scalability 27

Schedulability Results

® Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).

» 8.5 million task sets in total.

® Distributions:

» Utilizations uniform over
— [0.001,01] (light),
—[0.1,0.4] (medium), and
— [0.5,09] (heavy).

» Bimodal with utilizations distributed over either

[0.001,05) or [0.5,09] with probabilities of

— 8/9 and 1/9 (light),

— 6/9 and 3/9 (medium), and
— 4/9 and 5/9 (heavy).

will only show graphs
for these

Real-Time Scalability 28

HRT Summary

e PEDF usually wins.

» Exception: Lots of heavy tasks (makes bin-packing
hard).

® S-PD? usually does well.
» Staggering has an impact.

e PD? and GEDF are quite poor.
» PD? is negatively impacted by high preemption and
migration costs due to aligned quanta.

» GEDF suffers from high scheduling costs (due to
the global queue).

Real-Time Scalability 29

HRT, Bimodal Light

bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)

1 = LI I II_ ". 'IE 'Iillllllllyll ||4,J, derprapriaermpopmnumomnmumopomnomommmnommnmnn
,,'I%»
0.8 F = 2 \

: « PEDF péforms pretty well if most
E |task utilizations are low.
1S-PD2 performs pretty well too.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF wmmmm= C-EDF G-EDF i PFAIR i S-PFAIR

Real-Time Scalability 30

HRT, Bimodal Light

bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)

1 1 |] 1 1 | | | | | 1 1 1 1 1 | | |
1 = LB, ILII. “ “ Il' ll.'l',l;,llél mimnmnmn II_”'I'I nummnumnmumnmummnuummnnmummomn -
I%— (A
wh
E [.
= - [)
=l 2 =
0.8 F =z = -
= =z =
= = 3
. :
% 0.6 | = = H .
[= = 3
S = = =
'O = : :
Q = = -
S 04 F = = = -
(%] = — a
= = =
= 3 :
02} = 3 %]
= - -
— - -
: % :
= 7,
£l "‘1 "'o
0k Zummn A O P S i S s e
1 1 [] [| 1 [| [] [| [| 1 1 1 1] [|
2 4 6 8 10 12 14 16

18 20 22 24 26 28 30 32
utilization cap

P-EDF v C-EDF wnnnnem G-EDF PFAIR wmmmmn S-PFAIR
Real-Time Scalability

31

HRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)

1 1 1
1 F o |
,,,,,,,,
r
I'r,’
= “
0.8 F = 2
A

z|n this and:the next slide, as the
fraction of heavy tasks grows, the gap
between S-PD?Z and PEDF narrows.

= ',
Z T
ZAN i fl‘lfmﬂlllllllllll.lllllllllllllllllllll- (RN |

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF — C-EDF G-EDF mmninn PFAIR i S-PFAIR
Real-Time Scalability 32

HRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)

1 1] 1 1 L] L} L} Ll] | | 1 1] 1
1 F o B Ay 00 0TRSO -
"I”'l, "'
.
o
“ar, .
v)
- ‘I, =)
= Z)
0.8 = E /,: : -
E ~ =
= 3 C
= (4 @
> z % 1

et = -

= 06 F = 2 . -

g = = =

5 = z -

B : :
£ = ~

% 04 F = a H -

@ E = =
= E E
= - e
= U4)
= - =

0.2 : E t
= _E_ : -
% %
= .
E 2 %
= e e
Z “ K
0 F Lt 2L Ll s T e —— | -
1 1 | | [1 1 [1 1 [| 1 1 1 1 | | 1
2 4 6 8 10 12 14 16

18 20 22 24 26 28 30
utilization cap

P-EDF —

C-EDF wunnnem
Real-Time Scalability

G-EDF i PFAIR wmmmm S-PFAIR

33

HRT, Bimodal Heavy

bimodally distributed in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9)

1] L}] 1] I 1 I 1
1 = 5 ".'lll.“.".'l.'l,'l,;l]| ll 1 ll IL AN 00 IR N OO NN RE DI g hnmnmnonnnnmmn
=
l/,
= ',III "
= 'l/ 5
= I,)
0.8 B = "I >
= v a
= % =
= -)
= \7J -
= % &
= “L i}
> = - =]
X = 4
B 0.6 = _g- , :
o s Z =
3 - % E
2 = e =
S 04 F = £ =
)] = - -
= s =)
= 2 :
E Z s
= -
0.2 F z <)
= -
= - =
e 3
= ‘% s
%,
O - 2'llI|||||||I||||I|I||I|l|IIIIIIIIIIIII|||||||||||||||||||||||||||||||||||IImllaﬂ‘Illlllllfllﬂmllll-.l." (IR

2 4 6 8 10 12 14 16

18 20 22 24 26 28 30 32
utilization cap

P-EDF v C-EDF nmrnnnem G-EDF i PFAIR mmmmmm S-PFAIR
Real-Time Scalability

SRT Summary

® PEDF is not as effective as before, but
still OK in light-mostly cases.

® CEDF performs the best in most cases.
® S-PD? still performs generally well.

® GEDF is still negatively impacted by
higher scheduling costs.

» Note: SRT schedulability for GEDF entails
no utilization loss.

» NP-GEDF and GEDF are about the same.
® Note: The scale is different from before.

Real-Time Scalability

SRT, Bimodal Light

bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)

1 [U-l-f-..l.l;}% Y,‘l:r Al nEaETan TnT.Cmm..\
PEDF and CEDF perform well if tasks
are mostly light.

Note: S-PD? never performs really badly
INn any experiment.

22 24 26 28 30 32
utilization cap

P-EDF G-EDF uininm S-PFAIR

C-EDF PFAIR i G-NP-EDF
Real-Time Scalability 36

SRT, Bimodal Light
bimodally distributed in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9)
1 oo I I R Y ['.l',}; uill NI -
1
0.8 f EN -
N = %
= Z A
= 0.6 F = § -
E = %
O E ﬁ
2 ot]
5 <
02 t %, -
3 .
0k /////’ﬂlnmmmuumunu|||||||||::mmmiﬂ(ul,u SR RTNN IR R (RN -
22 24 26 28 30 32
utilization cap
P-EDF me—— G-EDF minmmn S-PFAIR
C-EDF wunnnnm PFAIR
Real-Time Scalability

G-NP-EDF

37

SRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)

T T T T T
. _ e R — - - _ A
A LR LR TR BN TR R RN TR LR B DR LR WA LR L [I.Ll_l.l_.l_‘l.thlj
Z ”;
5; =2
0.8 F E
: = Z
= »

This and the nekt slide show that as the
frequency of heavy tasks increases,
PEDF degrades. CEDF isn't affected

by this increase much.

22 24 26 28 30 32
utilization cap

P-EDF o G-EDF i S-PFAIR

C-EDF PFAIR i G-NP-EDF
Real-Time Scalability 38

SRT, Bimodal Medium

bimodally distributed in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9)
AR LR LN R LN R R R R TR U O Ly DR LR TR LN TR L I_Ll_l.l'_Jf_[l.H".d
2 iy
Y
0.8 F %
z
= 06 F E -
-Q =
© E
S =
© =
9 :
5 04F] -
:
0.2 f g _
0 F A s —-— Il)‘?l'“d‘fu -
22 24 26 28 30 32
utilization cap
P-EDF s
C-EDF wanunem
Real-Time Scalability

G-EDF i S-PFAIR
PFAIR G-NP-EDF

SRT, Bimodal Heavy

0.8

o
o

0.4

schedulability

0.2

Real-Time Scalability

bimodally distributed in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9)

22

24

P-EDF s
C-EDF wunnnnm

26 28
utilization cap

G-EDF i
PFAIR i

30 32

S-PFAIR
G-NP-EDF

40

Outline

® Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

® Research questions addressed.
® Experimental results.

® Observations/speculation.

® Future work.

Real-Time Scalability 41

Observations/Speculation

® Global algorithms are really sensitive to how
shared queues are implemented.

» Saw 100X performance improvement by switching
from linked lists to binomial heaps.

» Still working on this...

» Speculation: Can reduce GEDF costs to close to
PEDF costs for systems with < 32 cores.

® Per algorithm, preempt. cost = mig. cost.

» Due to having a shared cache.
» One catch: Migrations increase both costs.

® Quantum staggering is very effective.

Real-Time Scalability 42

Observations/Speculation (Cont'd)

® No one “best” algorithm.

® Intel has claimed they will produce an 80-
core general-purpose chip. If they do...

» the cores will have to be simple = high
execution costs = high utilizations = PEDF
will suffer:

» “pure” global algorithms will not scale;

» some instantiation of CEDF (or maybe CS-
PD?) will hit the “sweet spot”.

Real-Time Scalability 43

Future Work

® Thoroughly study “how to implement shared
queues’.

® Repeat this study on Intel and embedded
machines.

® Examine mixed HRT/SRT workloads.

® Factor in synchronization and dynamic
behavior.

» In past work, PEDF was seen to be more
negatively impacted by these things.

Real-Time Scalability 44

Thanks!

® Questions?

Real-Time Scalability

45

SRT Tardiness, Uniform Medium

uniformly distributed in [0.1, 0.4]
400 1 1 1 1 I | | 1 1 1 1 I | | 1 1

350 F

300 F

250 F

200 F

150 f

tardiness (in ms)

100 f

1
I||II\I|\|||II|IIlI||II||

50 F

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

C-EDF v G-EDF G-NP-EDF 1
Real-Time Scalability

46

Measuring Overheads

® Done using a UNC-produced tracer called
Feather-Trace.
» http://www.cs.unc.edu/~bbb/feathertrace/

® Highest 1% of values were tossed.
» Eliminates “outliers” due to non-deterministic
behavior in Linux, warm-up effects, etc.
® Used worst-case (average-case) values for
HRT (SRT) schedulability.

® Used linear regression analysis to produce
linear (in the task count) overhead
expressions.

Real-Time Scalability 47

Obtaining Kernel Overheads

® Ran 90 (synthetic) task sets per
scheduling algorithm for 30 sec.

® In total, over 600 million individual
overheads were recorded (45 GB of
data).

Real-Time Scalability

Kernel Overheads (in us)
(N = no. of tasks)

Worst-Case
Alg Tick Schedule Context SW Release
PD? 11.2 +.3N 32.7 3.1+.01N -
S-PD? 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

Average

Alg Tick Schedule Context SW Release
PD? 4.3+.03N 4.7 2.6+.001N e
S-PD? 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N

Real-Time Scalability

49

Kernel Overheads (in us)
(N = no. of tasks)

Worst-Case
Alg Tick Schedule Context SW Release
PD? 11.2 +.3N 32.7 3.1+.01N -
S-PD? 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

Average

Alg Tick Schedule Context SW Release
PD? 4.3+.03N 4.7 2.6+.001N e
S-PD? 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N

Real-Time Scalability

50

Obtaining Preemption/Migration
Overheads

® Ran 90 (synthetic) task sets per scheduling
algorithm for 60 sec.

® Each task has a 64K working set (WS) that it
accesses repeatedly with a 75/25 read/write
ratio.

® Recorded time to access WS after
preemption/migration minus “cache-warm
access’.

® In total, over 105 million individual preemption/
migration overheads were recorded (15 GB of
data).

Real-Time Scalability 51

Preemption/Migration Overheads (in us)

(N = no. of tasks)

Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 681.1 649.4 654.2 681.1
S-PD?2 | 104.1 103.4 103.4 104 .1
GEDF | 3754 375.4 326.8 321.1
CEDF | 171.6 171.6 167.3
PEDF | 139.1 139.1 e

Average

Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 172 131.4 141.8 187.6
S-PD?2 | 89.3 86.2 87.8 90.2
GEDF | 73 95.1 73.5 72.6
CEDF | 67 78.5 64.8
PEDF | 72.3 72.3 -—-

Real-Time Scalability

52

Preemption/Migration Overheads (in us)

(N = no. of tasks)

Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 681.1 649.4 654.2 681.1
S-PD?2 | 104.1 103.4 103.4 104 .1
GEDF | 3754 375.4 326.8 321.1
CEDF | 171.6 171.6 167.3
PEDF | 139.1 139.1 e

Average

Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD? 172 131.4 141.8 187.6
S-PD?2 | 89.3 86.2 87.8 90.2
GEDF | 73 95.1 73.5 72.6
CEDF | 67 78.5 64.8
PEDF | 72.3 72.3 -—-

Real-Time Scalability

53

HRT, Uniform Light

uniformly distributed in [0.001, 0.1]

1 -LIJLIILII.JI. [I .| II,,!_;_ rprapriappriaryronnnnmnmmnmnn
08 fF = = \

This is -thezeasiest case for partitioning,
so PEDF wins.

S-PD? does pretty well too.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF wmsssm C-EDF G-EDF i PFAIR i S-PFAIR
Real-Time Scalability 54

HRT, Uniform Light

uniformly distributed in [0.001, 0.1]

| | 1 1 1 L | | L 1 1 1 | | L | | 1 1 | |
1 =10 IlJl {1 11O LY L L A Il_UJl’ll mumnummmimn
= =)
= E "
- = -
- = a
= = %
08| = 1
- = =
= = =
- = -
- = -
- = -
= = =
= = - =
= 0.6 F = = :-'_ -
8 = = =
= e = E
s : :
% 04 = = S -
D] - = =
- 3
= = —
- = -
= = =
- = -
0.2 F s z s -
= = -
- = =
- - -
- - |)
= E .
O - 7"lllIlIIII—_:"IlllIlIllllIllIlIllIIllllIIIIII'MII-IIII-A&I,\ll,III,IJI,lI,IlI,IIJl,IlI,IlI U000 0SR20 O 0000 0 e
1 1 1 1

2 4 6 8 10 12 14 16

18 20 22 24 26 28 30 32
utilization cap

P-EDF v C-EDF wnnnnem

G-EDF i PFAIR
Real-Time Scalability

S-PFAIR

HRT, Uniform Medium

uniformly distributed in [0.1, 0.4]

| | 1 | | | | | | 1 | | | | 1
1 = NN mn “,_2_[]])’, Frrprapriappraprraegranmnnonmnmmmi
08 F % E \

Similar to before.

Utilizations aren’t high enough to start
causing problems for partitioning.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF — C-EDF G-EDF 1 PFAIR i S-PFAIR
Real-Time Scalability 56

HRT, Uniform Medium

uniformly distributed in [0.1, 0.4]

| | | | | 1 | | | 1 | | | | | | | | 1 1 1 | |
1 = NN mn Il,éllj)"l nirpnnmunnumuunmumnn U_l[]l_y‘ll mmmmumne
0.8 } i E 2
= - =
= o6} = = i -
@© = =
3 = = -
O = = =
2 04 i z £
0.2 F = = : -
O - %HIIIIIlIIIIIIIIlllrlllﬁﬂﬁﬂllllIIIIIIIIIIIIIIIIIIlIlIIIIIIlIlIIIIIIIIllIIIIIl;rMII-I-EIIHLH) 1 e |
2 4 6 8 10 12 14 16

Real-Time Scalability

P-EDF C-EDF wnnnnnm

18 20 22 24 26 28 30 32
utilization cap

G-EDF i PFAIR wmmmm S-PFAIR

57

HRT, Uniform Heavy

uniformly distributed in [0.5, 0.9]

| | 1 | | 1 | 1 | 1 1 |
1 i LI L 11O 1] O LI L [] |‘| I A0 R0 AN DR RN R RN D NN DR RN OR RN RD OE DD HE DD RD HD ED)y
B
7 | |
"y, |
3 m,, 2
= I’,” :
|
=
-

— /,
0.8 ~ E ""L
= «

Utilizations are higH enough to cause
problems for partitioning.

S-PD? wins now.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF C-EDF G-EDF i PFAIR S-PFAIR
Real-Time Scalability 58

HRT, Uniform Heavy

uniformly distributed in [0.5, 0.9]

T T T T T T T T T T T T T T T
1 ol 1 0 T O 1 T ll.ll'II',l’;l‘ I U0 00 XN NN NN IO AN DO NN NN OE OD RN OO RD D OE DRI m
1}
III[,,
= ‘m,
= ‘N,
- a ’,
0.8 = 'l(:

E L
= =2,
E "/,

P = ,,"/

= - = (7

E

o = n,

) = s

S 04 F =

0 =

02 F = i
2
0 F ;HHIIm N RN RN R
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16

18 20 22 24 26 28 30 32
utilization cap

P-EDF C-EDF wunmnnm
Real-Time Scalability

G-EDF PFAIR wmmmn S-PFAIR

SRT, Uniform Light

uniformly distributed in [0.001, 0.1]

= W IDNE AN EE O l,l,]l,[!)l NN mmmmmmmmmimm Il_y munmmn llAjJ mim
v A =

0.8 F

PEDF wins,

SEEEIR LA LALAL

'\
guangauatt?

II\HMJIllll|l|ll|l|l||\\\\
1

S-PD? performs pretty well.

..|1|'1'r'lll'l\'ll

-
-
E
o
-
|
-
-
-
=
-
-
-
-
-
=
|)
)

\\\\lll\HII\HNIIIIIlHIIII\I|I||I|l|II|ll|I|II|l

Al
R

L/
I ST N AR T B N IR TR RN TN RURI N TN

:\\\

(NIRRT Rl i)
1 1

2 4 6 8

INTURT AN A om =
1 1

10 12 14 16 18 20 22 24 26 28 30 32
utilization cap

P-EDF —

G-EDF mimnnn S-PFAIR
C-EDF wsusunnm PFAIR G-NP-EDF
Real-Time Scalability

60

SRT, Uniform Light

uniformly distributed in [0.001, 0.1]

0.8 F

o
(0))
T

04 F

schedulability

0.2 F

= W IDNE AN EE O l,l,jl,[!)lll TETE0E 0T 00 00 IO 0 T ieam I

\

scatatrnnyl
S TRl RAGLR IR IRLRLAL R i

-1t

YEL

Al
R

y munmmn llg mir
)

-
-
-
-
=
ot
s}
-
-
(=}
-
-
-
-
-

%g

e

2

=
"
v =
N T R TR N B N AN IR RN TR i AU RIS TR T n TR N RSB B TR I
1 1 1

INTURT AN A om =

Real-Time Scalability

P-EDF e—
C-EDF wennnm

8

10 12 14 16 18 20 22 24 26 28
utilization cap

G-EDF mmmmn S-PFAIR
PFAIR mmmmmm G-NP-EDF

30 32

61

SRT, Uniform Medium

uniformly distributed in [0.1, 0.4]

] | | 1
1 MumEBmmmmn I_.ﬂ.):llllllllllu'lll 1Treraereraereap "I)
" ‘f‘. ¢
/ = =
> < ¢
A =
- —
’ —
- =
08 F = =
cl ¥

CEDF really; benefits from using a
“no utilization loss” schedulabillity test
within each cluster.

22 24 26 28 30 32
utilization cap

P-EDF — G-EDF i S-PFAIR
C-EDF wunnnam PFAIR i G-NP-EDF

Real-Time Scalability 62

SRT, Uniform Medium

uniformly distributed in [0.1, 0.4]

1 numnunnn I_]l.’}'llllllllaJ‘.llllll RINIRIR NIRRT
08 -E’ 5;
= 0.6 Fy =
g T =
S 2= 5
3 %
5 04F *a :
@
0.2 F F-"
E.
0F :éﬁjfffﬁq-ll.lllljl.u 0t onan o o n onon o0 w0 00w aene gn s $hee o
22 24 26 28 30 32
utilization cap
P-EDF we— G-EDF i S-PFAIR
C-EDF nuunnnm PFAIR i G-NP-EDF
Real-Time Scalability

63

SRT, Uniform Heavy

uniformly distributed in [0.5, 0.9]

I 1
1 (IR IR RN RIRRIRININIRIR IR R R R RN NINIRRE R
Z

GEDF and NP-GEDF actually win in
this case.

cechediilahilitv

CEDF and S-PD? perform pretty well.

PEDF loses.

P_EDF I G-EDF IIIIIIIII S'PFAIR
C-EDF PFAIR i G-NP-EDF
Real-Time Scalability 64

SRT, Uniform Heavy
uniformly distributed in [0.5, 0.9]

1 R R TR N R e R R T T R oy e e e B RS T P TR R S T TR TR TRTRE RPN

0.8 F B E

= =

z E i
= 06F E E
v F! z
3 = =
B = =
o 2 =
5 04F 1 E
) S =
E % 1

02 B ;% "O" E"

é‘s "'o, <

Z (] -

0 F 3 mrmunm ;'ﬁﬁfm'ﬁ'w -
L 1 1 1 L 1
22 24 26 28 30 32
utilization cap
P-EDF — G-EDF minimn
C-EDF wennnm
Real-Time Scalability

PFAIR I

S-PFAIR
G-NP-EDF

65

On the Implementation
of Global Real-Time Schedulers

Simon Fraser University
April 15, 2010

Sathish Gopalakrishnan
The University of British Columbia

Work supported by IBM, SUN, and Intel Corps., NSF grants CNS 0834270, CNS 0834132, and CNS 0615197, and ARO grant W?11NF-06-1-0425.
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

Calandrino et al. (2006)
= Are commonly-studied RT schedulers implementable!?
= |n Linux on common hardware platforms?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages | 1 1—-123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

Calandrino et al. (2006)
= Are commonly-studied RT schedulers implementable!?
= |n Linux on common hardware platforms?

Intel 4x 2.7 GHz Xeon SMP

(few, fast processors; private caches)

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages | 1 1—-123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

Calandrino et al. (2006)
= Are commonly-studied RT schedulers implementable!?
= |n Linux on common hardware platforms?

partitioned EDF

G-NP-EDF

2 x global EDF

PD?2
2 x PFAIR

S-PD?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (l)

“for each tested scheme, scenarios exist
in which it is a viable choice”

Calandrino
= Are commc
= |n Linux on ¢

G-NP-EDF

PD?2

S-PD?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (ll)

Brandenburg et al. (2008)
= What if there are many slow processors!

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (ll)

Brandenburg et al. (2008)
= What if there are many slow processors!
= Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (ll)

Brandenburg et al. (2008)
= What if there are many slow processors!
= Explored scalability of RT schedulers on a Sun Niagara.

G-EDF: high overheads, low schedulability.

= @ ® ™ -
ol le
HEOEEEEEEEEEEEEEE S-PD?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time System
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Today’s discussion

How to implement global schedulers?

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Today’s discussion

How to implement global schedulers?
= Explore how implementation tradeoffs affect schedulability.

QEEE EEEE EEEE QEEE
@ @ @ @ Instead of
. . m m considering
one

implementation
of several
different
scheduling
algorithms...

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages | 1 1—-123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Today’s discussion

How to implement global schedulers?
= Explore how implementation tradeoffs affect schedulability.
= Case study: nine G-EDF variants on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time S bosium, page .
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms:A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157—169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Design Choices

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Design Choices

= When to schedule.

= Quantum alignment.

= How to handle interrupts.

= How to queue pending jobs.

= How to manage future releases.

= How to avoid unnecessary preemptions.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

Event-Driven }
= on job release P T3 isz
= on job completion ! i
. jrﬂ/ ilﬂr
= preemptions occur Py n
immediately

0

T release T completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

Event-Driven

= on job release

= on job completion

= preemptions occur
immediately

Quantum-Driven

= on every timer tick

= easier to implement

= on release a job is just
enqueued; scheduler is
invoked at next tick

Tuesday, April 5, 2011

P

Po

2

B

0

pl T

10

delay

partially-used quantum

o |
I

) l _ -.

0

10

15

T release

T completion

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

Alighed A

= Tick synchronized P,
across processors.

= Contention at %
quantum boundary! |

15

T release -‘- completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

Staggered A

= Ticks spread out Py
across quantum.

= Reduced bus and Ps
lock contention.

= Additional latency.

Aligned

= Tick synchronized P,
across processors.

= Contention at %
quantum boundary! |

15

T release T completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

Staggered A

= Ticks spread out Py
across quantum.

= Reduced bus and Ps
lock contention.

= Additional latency.

partially-used quantum

Aligned)
= Tick synchronized P il Iy i

ACross processors.
TCB
= Contention at P I i
N T T Y Y A
10 15

I release T completion

quantum boundary!

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

staggering delays
Staggered A)
= Ticks spread out Py T T3) } I T
across quantum. I‘—‘ I =Nl
-~ Reduced busand 12 I
lock contention. Lo Ly
= Additional latency. 0 3 10

partially-used quantum

Aligned }
= Tick synchronized P Il Ty i

ACross processors.
TCB
= Contention at P B i
N T T Y Y A
10 15

I release T completion

quantum boundary!

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

staggering delays

Staggered A

= Ticks spread out Py T
across quantum.

= Reduced bus and P
lock contention.

= Additional latency.

partially used quantum

Aligned | |
= Tick synchronized P

across processors. P .Tl_i |
= Contention at 2 1
quantum boundary! | II | |

10

I release T completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

Global interrupt handling.

= Job releases triggered by interrupts.

= Interrupts may fire on any processor.

= Jobs may execute = - oo

= Thus, in the worst case, a job may be
delayed by each interrupt.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

PSP Global interrupt handling.
@ @ = Job releases triggered by interrupts.
= Interrupts may fire on any processor

= Jobs may execute = -~ oo

= Thus, in the worst case, a]Ob may be
@ 0 delayed by each interrupt.

®®®®®®@®®®@®9®9 Dedicated interrupt handling.
° @ = Only one processor services interrupts.
= Jobs may execute -~ o oo

= Jobs are not delayed by release mterrupts

= Well-known technique; used in the Spring
@ @ kernel (Stankovic and Ramamritham, 1991).
eee@ FOER eeeeeeee = How does it affect schedulability!?

J.A. Stankovic and K. Ramamritham (1991),The Spring kernel: A new paradigm for real-time systems. I[EEE Software, 8(3):62-72.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

Globally-shared priority queue.

= Problem: hyper-period boundaries.
= Problem: lock contention.

= Problem: bus contention.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

Globally-shared priority queue.

= Problem: hyper-period boundaries.
= Problem: lock contention.

= Problem: bus contention.

Requirements.

= Mergeable priority queue: release n
jobs in O(log n) time.

= Parallel enqueue / dequeue operations.

= Mostly cache=-local data structures.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

Globally-shared priority queue.

= Problem: hyper-period boundaries.
= Problem: lock contention.

= Problem: bus contention.

In this study, we consider three queue implementations.

Coarse-Grained Heap Hierarchical Heaps Fine-Grained Heap

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Coarse-Grained Heap

Binomial heap + single lock.
= Lock used to synchronize all G-EDF state.
= Mergeable queue.
= No parallel updates.
= No cache-local updates.
= Low locking overhead
(only single lock acquisition).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Hierarchical Heaps

Per-processor queues + master queue.
= Fach queue protected by a lock.
= Master queue holds min element of each per-

processor queue.
= Global, sequential dequeue operations. .~
= Mostly-local enqueue operations. "

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Hierarchical Heaps

Per-processor queues + master queue.

= Fach queue protected by a lock.

= Master queue holds min element of each per-
processor queue.

= Global, sequential dequeue operations.

= Mostly-local enqueue operations. |

Locking.

= Dequeue: top-down.

= Enqueue: bottom-up.

= Enqueue may have to
drop lock, retry.

= Additional complexity
wrt. dequeue (see paper).

= Bottom line: expensive.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Fine-Grained Heap

Parallel binary heap.

= One lock per heap node.

= Proposed by Hunt et al. (1996).

= Not mergeable.

= Parallel enqueue / dequeue.
= No cache-local data.

Hunt et al. (1996),An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151—-157.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Fine-Grained Heap

Parallel binary heap.

= One lock per heap node.

= Proposed by Hunt et al. (1996).

= Not mergeable.

= Parallel enqueue / dequeue.
= No cache-local data.

Locking.

= Many lock acquisitions.

= Atomic peek+dequeue
operation needed to check for
preemptions.

Hunt et al. (1996),An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151—-157.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Additional Components

Release queue.
= Support mergeable queues.
= Support dedicated interrupt handling.

Job-to-processor mapping.
= Quickly determine whether preemption is required.
= Avoid unnecessary preemptions.

= Used to linearize concurrent scheduling decisions.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Implementation in LITMUSRT

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

LITMUSR'

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

LITMUS™!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNCOC’s Linux patch.
= Used in several previous studies.

= On-going development.
= Currently, based off of Linux 2.6.24.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

LITMUS™!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNCOC’s Linux patch. Scheduler Plugin APIL.
= Used in several previous studies. = scheduler_tick()

= On-going development. = schedule()
= Currently, based off of Linux 2.6.24. = release jobs ()

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

Name

Ready Q

Scheduling

Interrupts

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

Ready Q Scheduling |Interrupts

coarse-grained

coarse-grainead

coarse-grainea

hierarchical

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Baseline from
Brandenburg et al., 2008) nts

Ready Q Scheduling |Interrupts

coarse-grained

coarse-grainead

coarse-grainea

hierarchical

Tuesday, April 5, 2011

On tha Imnlamantatian nf Glahal Ranl.Tima Schadilarc

No fine-grained heaps + quantum-driven scheduling.
(Parallel updates not beneficial due to quantum barrier.)

Name

Ready Q

CEm

coarse-grainec

COm

coarse-grainec

S-COm

coarse-grainea

HEm
FEmM

hierarchical

Scheduling

Interrupts

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

Name

Ready Q

Scheduling

Interrupts

CEm

coarse-grainec

COm

coarse-grainec

S-COm

coarse-grainec

HEm

hierarchical

event-driven

event-driven

globa

globa

globa

global

FEmM

fine-grained

event-driven

global

CEl

coarse-grainec

CQl

coarse-grainec

S-CQI

coarse-grainec

FEI

fine-grained

event-driven

event-driven

edicatec

edicatec

edicatec

edicatec

Tuesday, April 5, 2011

On tha Imnlamantatian nf Glahal Ranl . Tima Schadilarc

No hierarchical heaps + dedicated interrupt handling.
(Hierarchical heaps not beneficial it only one proc. engueues.)

Name

Ready Q

Scheduling

Interrupts

CEm

coarse-grained

COm

coarse-grainead

S-COm

coarse-grainea

HEm

event-driven

globa

globa

globa

hierarchical event-driven global |

FEmM

fine-grained

event-driven

global

CEl

coarse-grainead

CQl

coarse-grainea

S-CQI

coarse-grainec

FEI

fine-grained

event-driven

event-driven

edicatec

edicatec

edicatec

edicatec

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Schedulability Study

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Objective

Compare the discussed implementations
in terms of the ratio of randomly-generated task sets
that can be shown to be schedulable
under consideration of system overheads.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

Release overhead.
= The cost of a one-shot timer interrupt.

Scheduling overhead.

release

schedule context switch

= Selecting the next job to run.

Context switch overhead.
= Changing address space.

Tuesday, April 5, 2011

T release

T completion

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

Release overhead.
= The cost of a one-shot timer interrupt.

Scheduling overhead.

release

schedule context switch

= Selecting the next job to run.

Context switch overhead.
= Changing address space.

\Wran

r(s|C

Tick overhead.
= Cost of a periodic timer interrupt.
= Beginning of a new quantum.

Preemption and migration overhead.

= Loss of cache affinity.

= Known from (Brandenburg et al., 2008).

Tuesday, April 5, 2011

T release

T completion

On the Implementation of Global Real-Time Schedulers

IPlI Latency

Inter-processor interrupts (IPls).

= Interrupt may be processed by a processor different from the one
that will schedule a newly-arrived job.

= Requires notification of remote processor.

= Event-based scheduling incurs added latency.

| IPI latency |

15

I release T completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Test Platform

LITMUSRT
= [JNC’s Linux-based Real-Time Testbed

~

f L
Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Sun UltraSPARC T1 “Niagara”
= 8 cores, 4 HWV threads per core = 32 logical processors.

= 3 MB shared L2 cache

— SUN UltraSPARC T | “Niagara”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Test Platform

LITMUSRT
= [JNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
= 8 cores, 4 HWV threads per core = 32 logical processors.
= 3 MB shared L2 cache

Overheads

= Traced overheads under each of the plugins.

= Collected more than 640,000,000 samples (total).
= Computed worst-case and average-case overheads.
= Over 20 graphs; see online version.

Outliers
= Removed top |% of samples to discard outliers.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Example: Tick Overhead

A

overhead (us)

v
v
=
O
O
Q
(%]
O
R
=

number of tasks

250

number of tasks

“Higher is worse.”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Example: Tick Overhead

worst-case tick overhead

Quantum-Driven

—
(2}
>

~

©
©
(O}

_C
| -
o
>
(@)

M

250

number of tasks

CEm tick overhead (worst-case CQm tick overhead (worst-case) — =
CE1 tick overhead (worst-case CQ1 tick overhead (worst-case) —o—
FEm tick overhead (worst-case HEm tick overhead (worst-case)

FE1 tick overhead (worst-case

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Example: Release Overhead

worst-case release overhead

Eveni-Driven

—
(2}
>

~

©
©
(O}

_C
| -
o
>
(@)

8
250

number of tasks

CEm release overhead (worst-case CQm release overhead (worst-case) — =
CE1 release overhead (worst-case CQ1 release overhead (worst-case) —e—
FEm release overhead (worst-case HEm release overhead (worst-case)

FE1 release overhead (worst-case

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

Methodology.

= Randomly generate task set.

= Apply overheads (for each G-EDF implementation).

= Test whether task set can be claimed schedulable (for
each G-EDF implementation).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

Methodology.

= Randomly generate task set.

= Apply overheads (for each G-EDF implementation).

= Test whether task set can be claimed schedulable (for
each G-EDF implementation).

Schedulability.

= Hard real-time: worst-case overheads, no tardiness.

= Soft real-time: average-case overheads, bounded
tardiness.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Tuesday, April 5, 2011

Study Setup

Methodology.

= Randomly generate task set.

= Apply overheads (for each G-EDF implementation).

= Test whether task set can be claimed schedulable (for
each G-EDF implementation).

Schedulability.

= Hard real-time: worst-case overheads, no tardiness.

= Soft real-time: average-case overheads, bounded
tardiness.

Task set generation.

= Six utilization distributions (uniform and bimodal).
= Three period distributions (uniform).

= Over 300 graphs; see online version.

On the Implementation of Global Real-Time Schedulers

Results

L

©
—
©
=,
(2}
-—
(O}
()
X
()
©
—
Q
0
o
>
e}
O]
C
O
()
Y
(@]
e
—
©
—

increasing utilization

| | | |
12 14 16 18 20

task set utilization cap (prior to inflation)

. | schedulable task sets

N
(o)}

“Higher is better.”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

DODDIRINKD
DDA

©
—
©
=
(2}
h—
(O}
()
X
()
]
-—
Q
0
o
>
e}
()
C
(&
()
Y—
o
e
-—
©
e

task set utilization cap (prior to inflation)

G-EDF —— CEm —<— CE1 —x—

Dedicated interrupt handling
was generally preferable (or no worse).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Staggering

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

e
—_
©

=
(2]

-
(]
(%)

4
n
]
-

Q<

Qo

«
>

e
O]

<
O
(%)

Y
(@]
e
-—
©
—_

18 20

task set utilization cap (prior to inflation)

G-EDF —— CQ1 —<—S-CQ1 —x—

Staggered quanta
were generally preferable (or no worse).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum- vs. Event-Driven

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

e
—_
©

=
(2]

-
(]
(%)

4
n
]
-

Q<

Qo

«
>

e
O]

<
O
(%)

Y
(@]
e
-—
©
—_

20

task set utilization cap (prior to inflation)

G-EDF —— FE1 —<«—S-CQ1 —x—

Event-driven scheduling
was preferable in most cases.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Choice of Ready Queue (I)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

ts [hard]

e
O]
<
O
(%2}
Y
(@]
e
-—
©
—_

20
task set utilization cap (prior to inflation)

G-EDF —+— CEm —<— HEmMm —x—

The coarse-grained ready queve
performed better than the hierarchical queue.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Choice of Ready Queue (ll)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

[[[[I
N/ <

[
AN AN
" N

DDA BN AN
BRI Towg "

O« VAN AN AN VaYVaX
AN NN NIV NIVIS =K

Fine-Grained

e
—_
©

=
(2]

-
(]
(%)

4
n
]
-

Q<

Qo

«
>

e
O]

<
O
(%)

Y
(@]
e
-—
©
—_

12 14 16 18 20

task set utilization cap (prior to inflation)

G-EDF —— CE1 —<— FE1 —x—

The fine-grained ready queue
performed marginally better than the coarse-grained queue
if used together with dedicated interrupt handling.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Conclusion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Summary of Results

Implementation choices
can impact schedulability as much as
scheduling-theoretic tradeoffs.

Unless task counts are very high
or periods very short,
G-EDF can scale to 32 processors.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Recommendation

Best results obtained with combination of:

fine-grained heap
event-driven scheduling
dedicated interrupt handling

e)

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Future Work

Platform.
= Repeat study on embedded hardware platform.

Implementation.
= Simplify locking requirements.
= Parallel mergeable heaps?

Analysis.
= Less pessimistic hard real-time G-EDF schedulability tests.

= | ess pessimistic interrupt accounting.

Tuesday, April 5, 2011

	SFU-1.pdf
	SFU-2

