
1 Real-Time Scalability

On the Scalability of Real-Time
Scheduling Algorithms on

Multicore Platforms: A Case Study

Sathish Gopalakrishnan
The University of British Columbia

(based on work by others at the University of North Carolina)

2 Real-Time Scalability

Focus of this Talk

 Multicore platforms are predicted to get
much larger in the future.
» 10s or 100s of cores per chip, multiple

hardware threads per core.

 Research Question: How will different
real-time scheduling algorithms scale?

» Scalability is defined w.r.t. schedulability
(more on this later).

3 Real-Time Scalability

Outline

 Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

 Research questions addressed.
 Experimental results.
 Observations/speculation.
 Future work.

4 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

5 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

6 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

7 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

»  Each job of T has a deadline at the next job release of T.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

8 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

»  Each job of T has a deadline at the next job release of T.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

9 Real-Time Scalability

Real-Time Workload Assumed in this Talk

  Set τ of periodic tasks scheduled on M cores:
»  Task T = (T.e,T.p) releases a job with exec. cost T.e every

T.p time units.
–  T’s utilization (or weight) is U(T) = T.e/T.p.
–  Total utilization is U(τ) = ΣT T.e/T.p.

»  Each job of T has a deadline at the next job release of T.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

This is an earliest-deadline-first schedule.
Much of our work pertains to EDF scheduling…

10 Real-Time Scalability

Scheduling vs. Schedulability

 W.r.t. scheduling, we actually care about two
kinds of algorithms:
» Scheduling algorithm (of course).

– Example: Earliest-deadline-first (EDF): Jobs with earlier
deadlines have higher priority.

» Schedulability test.

Test for
EDF

τ
yes
no

no timing requirement
will be violated if τ is
scheduled with EDF

a timing requirement
will (or may) be
violated …

11 Real-Time Scalability

Multiprocessor Real-Time Scheduling

Two Approaches:

Steps:
1.  Assign tasks to processors (bin

packing).
2.  Schedule tasks on each

processor using a uniprocessor
algorithm.

Partitioning Global Scheduling

Important Differences:
•  One task queue.
•  Tasks may migrate among

the processors.

12 Real-Time Scalability

Scheduling Algorithms Considered

 Partitioned EDF: PEDF.
 Preemptive & Non-preemptive Global

EDF: GEDF & NP-GEDF.
 Clustered EDF: CEDF.

» Partition onto clusters of cores, globally
schedule within each cluster

L2

From other
8 cores…

L1

C C C C

L1

C C C C clusters

13 Real-Time Scalability

Scheduling Algorithms (Continued)

 PD2, a global Pfair algorithm.
» Schedule jobs one quantum at a time at a

“uniform” rate.
– May preempt and migrate jobs frequently.

 Staggered PD2: S-PD2.
» Same as PD2 but quanta are “staggered” to

avoid excessive bus contention.

14 Real-Time Scalability

PD2 Example

  Under partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
»  Due to connections to bin-packing.

  Exception: Global “Pfair” algorithms do not
require caps.
»  Such algorithms schedule jobs one quantum at a time.

– May therefore preempt and migrate jobs frequently.
–  Perhaps less of a concern on a multicore platform.

  Under most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
»  Sufficient for soft real-time systems.

3 tasks with parameters (2,3) on two processors…

0 10 20 30

T = (2,3)

5 15 25

U = (2,3)

V = (2,3)

On Processor 1 On Processor 2

15 Real-Time Scalability

Schedulability

 HRT: No deadline is missed.
 SRT: Deadline tardiness is bounded.
 For some scheduling algorithms,

utilization loss is inherent when checking
schedulability.
» That is, schedulability cannot be

guaranteed for all task systems with total
utilization at most M.

16 Real-Time Scalability

Example: PEDF

  Under partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
»  Due to connections to bin-packing.

  Exception: Global “Pfair” algorithms do not
require caps.
»  Such algorithms schedule jobs one quantum at a time.

– May therefore preempt and migrate jobs frequently.
–  Perhaps less of a concern on a multicore platform.

  Under most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
»  Sufficient for soft real-time systems.

Example: Partitioning three tasks with parameters
(2,3) on two processors will overload one processor.

In terms of bin-packing…

Processor 1 Processor 2

Task 1

Task 2 Task 3

0

1

17 Real-Time Scalability

Schedulability Summary

 HRT SRT

PEDF util. loss util. loss (same as HRT)
GEDF util. loss no loss
NP-GEDF util. loss no loss
CEDF util. loss util. loss (not as bad as PEDF)

PD2 no loss no loss
S-PD2 slight loss no loss

 (must shrink periods
 by one quantum)

18 Real-Time Scalability

GEDF SRT Example

  Under partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
»  Due to connections to bin-packing.

  Exception: Global “Pfair” algorithms do not
require caps.
»  Such algorithms schedule jobs one quantum at a time.

– May therefore preempt and migrate jobs frequently.
–  Perhaps less of a concern on a multicore platform.

  Under most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
»  Sufficient for soft real-time systems.

Earlier example with GEDF…

0 10 20 30

T = (2,3)

5 15 25

U = (2,3)

V = (2,3)

Tardiness is at most one quantum.

19 Real-Time Scalability

Outline

 Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

 Research questions addressed.
 Experimental results.
 Observations/speculation.
 Future work.

20 Real-Time Scalability

Research Questions

  In theory, PD2 is always preferable.
»  It is optimal (no utilization loss).

 What about in practice?
» That is, what happens if system overheads

are taken into account?
 Do migrations really matter on a

multicore platform with a shared cache?
 As multicore platforms get larger, will

global algorithms scale?

Focus of this Talk: An Experimental
comparison of these scheduling
algorithms on the basis of schedulability.

21 Real-Time Scalability

Test System

  HW platform: Sun Niagara (UltraSPARC T1).

– OS has 32 “logical CPUs” to manage.
–  Far larger than any system considered before in RT literature.
– Note: CEDF “cluster” = 4 HW threads on a core.

Core 1 Core 8

L1 L1

L2

…
•  1.2 GHz “RISC-like”
 cores.

•  Relatively simple,
 e.g., no instr.
 reordering
 or branch prediction.

•  Caches somewhat
 small compared to
 Intel.

4 HW threads
per core

16K (8K) L1
instr. (data)
cache per
core
Shared 3MB
L2

22 Real-Time Scalability

Test System (Cont’d)

 Operating System: LITMUSRT: LInux Testbed
for MUltiprocessor Scheduling in Real-Time
systems.
» Developed at UNC.
» Extends Linux by allowing different schedulers to

be linked as “plug-in” components.
» Several (real-time) synchronization protocols are

also supported.
» Code is available at http://www.cs.unc.edu/

~anderson/litmus-rt/.

23 Real-Time Scalability

Methodology

 Ran several hundred (synthetic) task sets
on the test system.

 Collected 70 GB of raw overhead samples.
 Distilled expressions for average (for SRT)

and worst-case (for HRT) overheads.
 Conducted schedulability experiments

involving 8.5 million randomly-generated
task sets with overheads considered.

Note: This step is offline. It
does not involve the Niagara.

24 Real-Time Scalability

Kinds of Overheads

  Tick scheduling overhead.
»  Incurred when the kernel is invoked at the beginning of

each quantum (timer “tick”). A quantum is 1ms.
  Release overhead.

»  Incurred when the kernel is invoked to handle a job
release.

  Scheduling overhead.
»  Incurred when the scheduler (in the kernel) is invoked.

  Context-switching overhead.
»  Non-cache-related costs associated with a context switch.

  Preemption/migration overhead.
»  Costs incurred upon a preemption/migration due to a loss

of cache affinity.

These overheads can be accounted
for in schedulability tests by inflating

job execution costs.

(Doing this correctly is a little tricky.)

25 Real-Time Scalability

Kernel Overheads

Alg Scheduling Overhead (in µs)
PD2 32.7
S-PD2 43.1
GEDF/NP-GEDF 55.2+.26N (N = no. of tasks)

 Most overheads were small (2-15µs) except
worst-case overheads impacted by global
queues.
» Most notable: Worst-case scheduling overheads

for PD2, S-PD2, and GEDF/NP-GEDF:

26 Real-Time Scalability

Preemption/Migration Overheads

 Obtained by measuring synthetic tasks, each
with a 64K working set & 75/25 read/write ratio.
»  Interesting trends: PD2 is terrible, staggering really

helps, preempt. cost ≈ mig. cost per algorithm, but
algorithms that migrate have higher costs.

 Worst-Case Overheads (in µs)
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1
S-PD2 104.1 103.4 103.4 104.1
GEDF 375.4 375.4 326.8 321.1
CEDF 171.6 171.6 167.3 ---
PEDF 139.1 139.1 --- ---

27 Real-Time Scalability

Schedulability Results

  Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).
»  8.5 million task sets in total.

  Distributions:
»  Utilizations uniform over

–  [0.001,01] (light),
–  [0.1,0.4] (medium), and
–  [0.5,09] (heavy).

»  Bimodal with utilizations distributed over either
[0.001,05) or [0.5,09] with probabilities of
–  8/9 and 1/9 (light),
–  6/9 and 3/9 (medium), and
–  4/9 and 5/9 (heavy).

28 Real-Time Scalability

Schedulability Results

  Generated random tasks using 6 distributions
and checked schedulability using “state-of-
the-art” tests (with overheads considered).
»  8.5 million task sets in total.

  Distributions:
»  Utilizations uniform over

–  [0.001,01] (light),
–  [0.1,0.4] (medium), and
–  [0.5,09] (heavy).

»  Bimodal with utilizations distributed over either
[0.001,05) or [0.5,09] with probabilities of
–  8/9 and 1/9 (light),
–  6/9 and 3/9 (medium), and
–  4/9 and 5/9 (heavy).

will only show graphs
for these

29 Real-Time Scalability

HRT Summary

  PEDF usually wins.
»  Exception: Lots of heavy tasks (makes bin-packing

hard).
  S-PD2 usually does well.

»  Staggering has an impact.

  PD2 and GEDF are quite poor.
»  PD2 is negatively impacted by high preemption and

migration costs due to aligned quanta.
»  GEDF suffers from high scheduling costs (due to

the global queue).

30 Real-Time Scalability

HRT, Bimodal Light

PEDF peforms pretty well if most
task utilizations are low.

S-PD2 performs pretty well too.

31 Real-Time Scalability

HRT, Bimodal Light

32 Real-Time Scalability

HRT, Bimodal Medium

In this and the next slide, as the
fraction of heavy tasks grows, the gap
between S-PD2 and PEDF narrows.

33 Real-Time Scalability

HRT, Bimodal Medium

34 Real-Time Scalability

HRT, Bimodal Heavy

35 Real-Time Scalability

SRT Summary

 PEDF is not as effective as before, but
still OK in light-mostly cases.

 CEDF performs the best in most cases.
 S-PD2 still performs generally well.
 GEDF is still negatively impacted by

higher scheduling costs.
» Note: SRT schedulability for GEDF entails

no utilization loss.
» NP-GEDF and GEDF are about the same.

 Note: The scale is different from before.

36 Real-Time Scalability

SRT, Bimodal Light

PEDF and CEDF perform well if tasks
are mostly light.

Note: S-PD2 never performs really badly
in any experiment.

37 Real-Time Scalability

SRT, Bimodal Light

38 Real-Time Scalability

SRT, Bimodal Medium

This and the next slide show that as the
frequency of heavy tasks increases,
PEDF degrades. CEDF isn’t affected
by this increase much.

39 Real-Time Scalability

SRT, Bimodal Medium

40 Real-Time Scalability

SRT, Bimodal Heavy

41 Real-Time Scalability

Outline

 Background.
» Real-time workload assumed.
» Scheduling algorithms evaluated.
» Some properties of these algorithms.

 Research questions addressed.
 Experimental results.
 Observations/speculation.
 Future work.

42 Real-Time Scalability

Observations/Speculation

  Global algorithms are really sensitive to how
shared queues are implemented.
»  Saw 100X performance improvement by switching

from linked lists to binomial heaps.
»  Still working on this…
»  Speculation: Can reduce GEDF costs to close to

PEDF costs for systems with ≤ 32 cores.
  Per algorithm, preempt. cost ≈ mig. cost.

»  Due to having a shared cache.
»  One catch: Migrations increase both costs.

  Quantum staggering is very effective.

43 Real-Time Scalability

Observations/Speculation (Cont’d)

 No one “best” algorithm.
  Intel has claimed they will produce an 80-

core general-purpose chip. If they do…
»  the cores will have to be simple ⇒ high

execution costs ⇒ high utilizations ⇒ PEDF
will suffer;

»  “pure” global algorithms will not scale;
» some instantiation of CEDF (or maybe CS-

PD2) will hit the “sweet spot”.

44 Real-Time Scalability

Future Work

 Thoroughly study “how to implement shared
queues”.

 Repeat this study on Intel and embedded
machines.

 Examine mixed HRT/SRT workloads.
 Factor in synchronization and dynamic

behavior.
»  In past work, PEDF was seen to be more

negatively impacted by these things.

45 Real-Time Scalability

Thanks!

 Questions?

46 Real-Time Scalability

SRT Tardiness, Uniform Medium

47 Real-Time Scalability

Measuring Overheads

  Done using a UNC-produced tracer called
Feather-Trace.
»  http://www.cs.unc.edu/~bbb/feathertrace/

  Highest 1% of values were tossed.
»  Eliminates “outliers” due to non-deterministic

behavior in Linux, warm-up effects, etc.
  Used worst-case (average-case) values for

HRT (SRT) schedulability.
  Used linear regression analysis to produce

linear (in the task count) overhead
expressions.

48 Real-Time Scalability

Obtaining Kernel Overheads

 Ran 90 (synthetic) task sets per
scheduling algorithm for 30 sec.

  In total, over 600 million individual
overheads were recorded (45 GB of
data).

49 Real-Time Scalability

Kernel Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Tick Schedule Context SW Release
PD2 11.2 +.3N 32.7 3.1+.01N ---
S-PD2 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

 Average
Alg Tick Schedule Context SW Release
PD2 4.3+.03N 4.7 2.6+.001N ---
S-PD2 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N

50 Real-Time Scalability

Kernel Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Tick Schedule Context SW Release
PD2 11.2 +.3N 32.7 3.1+.01N ---
S-PD2 4.8+.3N 43.1 3.2+.003N ---
GEDF 3+.003N 55.2+.26N 29.2 45+.3N
CEDF 3.2 14.8+.01N 6.1 30.3
PEF 2.7+.002N 8.6+.01N 14.9+.04N 4.7+.009N

 Average
Alg Tick Schedule Context SW Release
PD2 4.3+.03N 4.7 2.6+.001N ---
S-PD2 2.1+.02N 4.2 2.5+.001N ---
GEDF 2.1+.002N 11.8+.06N 7.6 5.8+.1N
CEDF 2.8 6.1+.01N 3.2 16.5
PEDF 2.1+.002N 2.7+.008N 4.7+.005N 4+.005N

51 Real-Time Scalability

Obtaining Preemption/Migration
Overheads

  Ran 90 (synthetic) task sets per scheduling
algorithm for 60 sec.

  Each task has a 64K working set (WS) that it
accesses repeatedly with a 75/25 read/write
ratio.

  Recorded time to access WS after
preemption/migration minus “cache-warm
access”.

  In total, over 105 million individual preemption/
migration overheads were recorded (15 GB of
data).

52 Real-Time Scalability

Preemption/Migration Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1
S-PD2 104.1 103.4 103.4 104.1
GEDF 375.4 375.4 326.8 321.1
CEDF 171.6 171.6 167.3 ---
PEDF 139.1 139.1 --- ---

 Average
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 172 131.4 141.8 187.6
S-PD2 89.3 86.2 87.8 90.2
GEDF 73 95.1 73.5 72.6
CEDF 67 78.5 64.8 ---
PEDF 72.3 72.3 --- ---

53 Real-Time Scalability

Preemption/Migration Overheads (in µs)
(N = no. of tasks)

 Worst-Case
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 681.1 649.4 654.2 681.1
S-PD2 104.1 103.4 103.4 104.1
GEDF 375.4 375.4 326.8 321.1
CEDF 171.6 171.6 167.3 ---
PEDF 139.1 139.1 --- ---

 Average
Alg Overall Preemption Intra-Cluster Mig Inter-Cluster Mig
PD2 172 131.4 141.8 187.6
S-PD2 89.3 86.2 87.8 90.2
GEDF 73 95.1 73.5 72.6
CEDF 67 78.5 64.8 ---
PEDF 72.3 72.3 --- ---

54 Real-Time Scalability

HRT, Uniform Light

This is the easiest case for partitioning,
so PEDF wins.

S-PD2 does pretty well too.

55 Real-Time Scalability

HRT, Uniform Light

56 Real-Time Scalability

HRT, Uniform Medium

Similar to before.

Utilizations aren’t high enough to start
causing problems for partitioning.

57 Real-Time Scalability

HRT, Uniform Medium

58 Real-Time Scalability

HRT, Uniform Heavy

Utilizations are high enough to cause
problems for partitioning.

S-PD2 wins now.

59 Real-Time Scalability

HRT, Uniform Heavy

60 Real-Time Scalability

SRT, Uniform Light

PEDF wins, S-PD2 performs pretty well.

61 Real-Time Scalability

SRT, Uniform Light

62 Real-Time Scalability

SRT, Uniform Medium

CEDF really benefits from using a
“no utilization loss” schedulability test
within each cluster.

63 Real-Time Scalability

SRT, Uniform Medium

64 Real-Time Scalability

SRT, Uniform Heavy

GEDF and NP-GEDF actually win in
this case.

CEDF and S-PD2 perform pretty well.

PEDF loses.

65 Real-Time Scalability

SRT, Uniform Heavy

On the Implementation
of Global Real-Time Schedulers

Sathish Gopalakrishnan
The University of British Columbia

Work supported by IBM, SUN, and Intel Corps., NSF grants CNS 0834270, CNS 0834132, and CNS 0615197, and ARO grant W911NF-06-1-0425.

Simon Fraser University
April 15, 2010

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (I)

2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

3

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Intel 4x 2.7 GHz Xeon SMP
(few, fast processors; private caches)

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

4

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

partitioned EDF

2 x global EDF

2 x PFAIR

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

UNC’s Implementation Studies (I)

5

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Calandrino et al. (2006)
➡ Are commonly-studied RT schedulers implementable?
➡ In Linux on common hardware platforms?

“for each tested scheme, scenarios exist
in which it is a viable choice”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

UNC’s Implementation Studies (II)

6

Brandenburg et al. (2008)
➡ What if there are many slow processors?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

M
ain M

em
ory

L2
Cache

L2
Cache

Proc. 1

Proc. 2

Proc. 4

Proc. 3

L2
Cache

L2
Cache

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

UNC’s Implementation Studies (II)

7

Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

UNC’s Implementation Studies (II)

8

Brandenburg et al. (2008)
➡ What if there are many slow processors?
➡ Explored scalability of RT schedulers on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

G-EDF: high overheads, low schedulability.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Today’s discussion

9

How to implement global schedulers?

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

G-EDF

P-EDF

S-PD2

G-NP-EDF

PD2

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

Today’s discussion

10

How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

Instead of
considering

one
implementation

of several
different
scheduling

algorithms…

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

M
a
in

 M
e
m

o
ry

L2 Cache

L1
Cache

Core 1

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 2

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 3

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 4

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 6

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 5

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 7

Thread

1

Thread

2

Thread

3

Thread

4

L1
Cache

Core 8

Thread

1

Thread

2

Thread

3

Thread

4

Today’s discussion

11

How to implement global schedulers?
➡ Explore how implementation tradeoffs affect schedulability.
➡ Case study: nine G-EDF variants on a Sun Niagara.

Calandrino et al. (2006), LITMUSRT: A testbed for empirically comparing real-time multiprocessor schedulers. In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 111–123.
Brandenburg et al. (2008), On the scalability of real-time scheduling algorithms on multicore platforms: A case study. In: Proceedings of the 29th IEEE Real-Time Systems Symposium, pages 157–169.

G-EDF G-EDF

G-EDF G-EDF

G-EDF

G-EDF G-EDF

G-EDF

G-EDF

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Design Choices

12
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Design Choices

13

➡ When to schedule.
➡ Quantum alignment.
➡ How to handle interrupts.
➡ How to queue pending jobs.
➡ How to manage future releases.
➡ How to avoid unnecessary preemptions.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

14
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduler Invocation

15

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur

immediately

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

release completion

Scheduler Invocation

16

Event-Driven
➡ on job release
➡ on job completion
➡ preemptions occur

immediately

Quantum-Driven
➡ on every timer tick
➡ easier to implement
➡ on release a job is just

enqueued; scheduler is
invoked at next tick

P1

P2
T x

1T y
2

T z
3 T y

2

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

17

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

P1

P2

5 10 150
release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

18

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2

5 10 150

P1

P2

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

19

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

20

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Alignment

21

Aligned
➡ Tick synchronized

across processors.
➡ Contention at

quantum boundary!

Staggered
➡ Ticks spread out

across quantum.
➡ Reduced bus and

lock contention.
➡ Additional latency.

P1

P2
T x

1T y
2

T z
3 T y

2

staggering delays

5 10 150

P1

P2
T x

1T y
2

T z
3 T y

2

delay partially-used quantum

5 10 150
release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

22
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

23

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be

delayed by each interrupt.

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

24

Global interrupt handling.
➡ Job releases triggered by interrupts.
➡ Interrupts may fire on any processor.
➡ Jobs may execute on any processor.
➡ Thus, in the worst case, a job may be

delayed by each interrupt.

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Dedicated interrupt handling.
➡ Only one processor services interrupts.
➡ Jobs may execute on other processors.
➡ Jobs are not delayed by release interrupts.
➡ Well-known technique; used in the Spring

kernel (Stankovic and Ramamritham, 1991).
➡ How does it affect schedulability?

J.A. Stankovic and K. Ramamritham (1991), The Spring kernel: A new paradigm for real-time systems. IEEE Software, 8(3):62–72.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

25

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Ready Queue

26

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

T a
1

T b
2

T c
3

T d
4

Ready Queue

27

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.
➡ Problem: lock contention.
➡ Problem: bus contention.

Requirements.
➡ Mergeable priority queue: release n

jobs in O(log n) time.
➡ Parallel enqueue / dequeue operations.
➡ Mostly cache-local data structures.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue

28

Globally-shared priority queue.
➡ Problem: hyper-period boundaries.	

➡ Problem: lock contention.
➡ Problem: bus contention.

P1 P2

…

P32

Coarse-Grained Heap Hierarchical Heaps Fine-Grained Heap

In this study, we consider three queue implementations.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Coarse-Grained Heap

29

Binomial heap + single lock.
➡ Lock used to synchronize all G-EDF state.
➡ Mergeable queue.
➡ No parallel updates.
➡ No cache-local updates.
➡ Low locking overhead

(only single lock acquisition).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Hierarchical Heaps

30

P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Hierarchical Heaps

31

P1 P2

…

P32

Per-processor queues + master queue.
➡ Each queue protected by a lock.
➡ Master queue holds min element of each per-

processor queue.
➡ Global, sequential dequeue operations.
➡ Mostly-local enqueue operations.

Locking.
➡ Dequeue: top-down.
➡ Enqueue: bottom-up.
➡ Enqueue may have to

drop lock, retry.
➡ Additional complexity

wrt. dequeue (see paper).
➡ Bottom line: expensive.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Fine-Grained Heap

32

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Ready Queue: Fine-Grained Heap

33

Parallel binary heap.
➡ One lock per heap node.
➡ Proposed by Hunt et al. (1996).
➡ Not mergeable.
➡ Parallel enqueue / dequeue.
➡ No cache-local data.

Locking.
➡ Many lock acquisitions.
➡ Atomic peek+dequeue

operation needed to check for
preemptions.

Hunt et al. (1996), An efficient algorithm for concurrent priority queue heaps. Information Processing Letters, 60(3):151–157.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Additional Components

34

Release queue.
➡ Support mergeable queues.
➡ Support dedicated interrupt handling.

Job-to-processor mapping.
➡ Quickly determine whether preemption is required.
➡ Avoid unnecessary preemptions.
➡ Used to linearize concurrent scheduling decisions.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Implementation in LITMUSRT

35
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

36

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

37

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

38

Linux Testbed for Multiprocessor Scheduling
in Real-Time systems

UNC’s Linux patch.
➡ Used in several previous studies.
➡ On-going development.
➡ Currently, based off of Linux 2.6.24.

Scheduler Plugin API.
➡ scheduler_tick()
➡ schedule()
➡ release_jobs()

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

39

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

FEm fine-grained event-driven global

HEm hierarchical event-driven global

S-CQm coarse-grained quantum (staggered) global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

40

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

41

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

Baseline from
(Brandenburg et al., 2008)

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

42

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

FE1 fine-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

No fine-grained heaps + quantum-driven scheduling.
(Parallel updates not beneficial due to quantum barrier.)

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

43

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Considered G-EDF Variants

44

Name Ready Q Scheduling Interrupts
CEm coarse-grained event-driven global

CQm coarse-grained quantum (aligned) global

S-CQm coarse-grained quantum (staggered) global

HEm hierarchical event-driven global

FEm fine-grained event-driven global

CE1 coarse-grained event-driven dedicated

CQ1 coarse-grained quantum (aligned) dedicated

S-CQ1 coarse-grained quantum (staggered) dedicated

FE1 fine-grained event-driven dedicated

No hierarchical heaps + dedicated interrupt handling.
(Hierarchical heaps not beneficial if only one proc. enqueues.)

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Schedulability Study

45
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Objective

46

Compare the discussed implementations
in terms of the ratio of randomly-generated task sets

that can be shown to be schedulable
under consideration of system overheads.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

47
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

48

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Context switch overhead.
➡ Changing address space.

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Scheduling Overheads

49

Release overhead.
➡ The cost of a one-shot timer interrupt.

Scheduling overhead.
➡ Selecting the next job to run.

Tick overhead.
➡ Cost of a periodic timer interrupt.
➡ Beginning of a new quantum.

Context switch overhead.
➡ Changing address space.

Preemption and migration overhead.
➡ Loss of cache affinity.
➡ Known from (Brandenburg et al., 2008).

P1

P2
T x

1T y
2

T z
3 T y

2

context switchrelease schedule

T z
3csr r

cscsr

cs

cs

cs

5 10 150

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

IPI Latency

50

P1

P2 T x
1T y

2

T z
3 T y

2

IPI latency

5 10 150

Inter-processor interrupts (IPIs).
➡ Interrupt may be processed by a processor different from the one

that will schedule a newly-arrived job.
➡ Requires notification of remote processor.
➡ Event-based scheduling incurs added latency.

release completion

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Test Platform

51

LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Test Platform

52

LITMUSRT

➡ UNC’s Linux-based Real-Time Testbed

Sun UltraSPARC T1 “Niagara”
➡ 8 cores, 4 HW threads per core = 32 logical processors.
➡ 3 MB shared L2 cache

on

— SUN UltraSPARC T1 “Niagara”

0

100

200

300

400

500

600

700

PFAIR S-PFAIR G-EDF C-EDF P-EDF

Overheads
➡ Traced overheads under each of the plugins.
➡ Collected more than 640,000,000 samples (total).
➡ Computed worst-case and average-case overheads.
➡ Over 20 graphs; see online version.

Outliers
➡ Removed top 1% of samples to discard outliers.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Example: Tick Overhead

53

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case tick overhead

CEm tick overhead (worst-case)
CE1 tick overhead (worst-case)
FEm tick overhead (worst-case)
FE1 tick overhead (worst-case)

CQm tick overhead (worst-case)
CQ1 tick overhead (worst-case)
HEm tick overhead (worst-case)“Higher is worse.”

number of tasks

m
ic

ro
se

co
nd

s

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Example: Tick Overhead

54

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case tick overhead

CEm tick overhead (worst-case)
CE1 tick overhead (worst-case)
FEm tick overhead (worst-case)
FE1 tick overhead (worst-case)

CQm tick overhead (worst-case)
CQ1 tick overhead (worst-case)
HEm tick overhead (worst-case)

Event-Driven

Quantum-Driven

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450

ov
er

he
ad

 (u
s)

number of tasks

worst-case release overhead

CEm release overhead (worst-case)
CE1 release overhead (worst-case)
FEm release overhead (worst-case)
FE1 release overhead (worst-case)

CQm release overhead (worst-case)
CQ1 release overhead (worst-case)
HEm release overhead (worst-case)

Example: Release Overhead

55

Quantum-Driven

Event-Driven

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

56

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

57

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded

tardiness.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Study Setup

58

Methodology.
➡ Randomly generate task set.
➡ Apply overheads (for each G-EDF implementation).
➡ Test whether task set can be claimed schedulable (for

each G-EDF implementation).
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Task set generation.
➡ Six utilization distributions (uniform and bimodal).
➡ Three period distributions (uniform).
➡ Over 300 graphs; see online version.

Schedulability.
➡ Hard real-time: worst-case overheads, no tardiness.
➡ Soft real-time: average-case overheads, bounded

tardiness.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Results

59

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

increasing utilizationsc
he

du
la

bl
e

ta
sk

 s
et

s

“Higher is better.”

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Interrupt Handling

60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm CE1

Dedicated

Zero Overh.Global

Dedicated interrupt handling
was generally preferable (or no worse).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum Staggering

61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.001, 0.1]; period uniformly in [10, 100]

G-EDF CQ1 S-CQ1

Staggered

Zero OverheadsAligned

Staggered quanta
were generally preferable (or no worse).

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Quantum- vs. Event-Driven

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF FE1 S-CQ1

Quantum
Event

Event-driven scheduling
was preferable in most cases.

Zero Overh.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Choice of Ready Queue (1)

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]

G-EDF CEm HEm

Hierarchical
Coarse-Grained

Zero Overh.

The coarse-grained ready queue
performed better than the hierarchical queue.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Choice of Ready Queue (II)

64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

utilization uniformly in [0.5, 0.9]; period uniformly in [10, 100]

G-EDF CE1 FE1

Zero O.Coarse-Grained

Fine-Grained

The fine-grained ready queue
performed marginally better than the coarse-grained queue
if used together with dedicated interrupt handling.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Conclusion

65
Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Summary of Results

66

Implementation choices
can impact schedulability as much as

scheduling-theoretic tradeoffs.

Unless task counts are very high
or periods very short,

G-EDF can scale to 32 processors.

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Recommendation

67

M
ai

n
M

em
or

y

L2 Cache

L1
Cache

Core 1

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 2

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 3

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 4

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 6

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 5

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 7

Thread
1

Thread
2

Thread
3

Thread
4

L1
Cache

Core 8

Thread
1

Thread
2

Thread
3

Thread
4

Best results obtained with combination of:

fine-grained heap
event-driven scheduling

dedicated interrupt handling

Tuesday, April 5, 2011

On the Implementation of Global Real-Time Schedulers

Future Work

68

Platform.
➡ Repeat study on embedded hardware platform.

Implementation.
➡ Simplify locking requirements.
➡ Parallel mergeable heaps?

Analysis.
➡ Less pessimistic hard real-time G-EDF schedulability tests.
➡ Less pessimistic interrupt accounting.

Tuesday, April 5, 2011

	SFU-1.pdf
	SFU-2

