
Processes and threads

Multiple threads or processes
The difference between a process and a thread
Kernel-level threads and user-level threads
POSIX functionality for multithreading
Communication between processes and threads

Material covered so far

• Processor scheduling
– Periodic tasks with static and dynamic priorities
• Utilization bounds

•  Exact tests

• Operating system support
– The POSIX standard: an introduction

• Now: Processes, threads, and POSIX support

2

Example

3

We could write separate threads/processes for t, p,
and s.

4

while (1) {

 Wait until data is available from t or p

 Receive the data from t or p

 Print it to the console

}

while (1) {

 Read pressure
 Compute value to set valve

 Set valve
 Send logging data to s

 Wait a while

} Communication

Synchronization

while (1) {
 Read temperature
 Compute value to set heater
 Set heater
 Send logging data to s
 Wait a while
}

Support for multiple processes/threads

• A real-time OS needs to provide:

• An API that allows the user to:

• Create and kill processes and threads

• Communicate between processes and threads

• A method to time-slice processes and threads on one
or more CPUs such that:

• Hard Deadlines are obeyed (first priority)

• Soft Deadlines are obeyed (second priority)

• Deadlocks do not occur (another first priority)

•  Scheduling policies that we have studied so far (at least in part)

5

Threads and processes

•  What is the difference between a thread and a process?

•  Recall that a process includes many things:

– An address space (defining all the code and data pages)

– OS resources (e.g., open files) and accounting information

– Execution state (PC, SP, registers, etc.)

•  Creating a new process is costly because of all of the

– data structures that must be allocated and initialized

– FreeBSD: 81 fields, 408 bytes

•  …which does not even include page tables, etc.

•  Communicating between processes is costly because

– Most communication goes through the OS

– Overhead of system calls and copying data

6

Rethinking processes

• What is similar in these cooperating processes?
– They all share the same code and data (address space)

– They all share the same privileges
– They all share the same resources (files, sockets, etc.)

• What don’t they share?
– Each has its own execution state: PC, SP, and registers

• Key idea: Why don’t we separate the concept of a process
from its execution state?

– Process: address space, privileges, resources, etc.

– Execution state: PC, SP, registers

• Exec state also called thread of control, or thread

7

Threads

• Modern OSes separate the concepts of processes and
threads:
– The thread defines a sequential execution stream within a

process (PC, SP, registers)

– The process defines the address space and general process
attributes (everything but threads of execution)

• A thread is bound to a single process
– Processes, however, can have multiple threads

• Threads become the unit of scheduling
– Processes are now the containers in which threads execute
– Processes become static, threads are the dynamic entities

8

Threads

9

Process!

This is a single-threaded process (a process
with only one thread)

You could have multiple interacting processes
of this type.

Each process would maintain its own: address
space contents

•  registers

•  program counter

•  stack

•  state of system calls state of system calls

•  all files from the process and their state

Threads

10

Threads belonging to the same process shares
its code, data section, & other O/S resources
e.g. open files, signals, etc.

11

Kernel-level threads vs. user-level threads

 Another distinction:

  Kernel-Level Threads: the threads that the O/S kernel “knows
about”, i.e., the kernel switches between kernel threads using
some kernel-defined scheduling strategy

  User-Level Threads: Threads within an application that the kernel
is unaware of

12

User-level threads (ULT)
–  Supported above the kernel

–  Exist only within a process
–  Implemented by a thread library at user level
–  ULTs in process A cannot access a ULTs in

process B
–  Used by programmers to handle multiple

flows of control within a program
–  Library provides support for thread

creation, scheduling management with no
support from the kernel

–  Kernel is unaware of user level threads. All
thread creation and scheduling are done in
user space without the need for kernel
intervention – thus ULTs are generally fast to
create and manage

CPU"

Process A

Kernel Level
Threads

Examples
 POSIX Pthreads
 Solaris threads

13

Kernel threads
–  Supported directly by O/S
–  The O/S will have a separate thread

for each process and that will perform
O/S activities on behalf of the O/S

–  The kernel performs thread creation,
scheduling & management in kernel
space

–  Thread management is carried out by
O/S and kernel threads are generally
slower to crate and manage than user
threads

CPU"

Process A"

Kernel Level"
Threads"

Examples
 - Windows 95/98/NT/2000

 - Solaris
 - Tru64 UNIX
 - Linux

14

Multithreading modes

 When an OS supports more than one kernel thread per process,
then

 possible to multiplex the execution of different sets of user
threads on

 different kernel threads

 Different models exist for mixing and matching kernel and user
threads:
 One-to-one
 Many-to-one
 Many-to-many

15

Multithreading models: Many-to-one

 Maps many ULTs to one KLT
 Advantage:

• Thread management is carried out
in user space so it is efficient

 Disadvantages:
• The entire process will block if a

thread makes a blocking system
call

• Only one thread can access the
kernel at a time, thus multiple
threads are unable to run in parallel
on multiprocessors

 Example: Solaris 2

16

Multithreading models: One-to-one

  Map each user thread to a kernel
thread

  Advantages:
• Provides more concurrency by

allowing another thread to run when a
thread makes a blocking system call

• Allows multiple threads to run in
parallel on multiprocessors

  Disadvantages:
• Creating a user thread requires

creating a corresponding kernel thread
which can burden the performance of
an application

  Most implementations of this model
restrict the number of threads
supported by the system

  Examples: Windows NT, 2000, OS/2

17

  Multiplexes many ULTs to a smaller or equal
number of kernel threads

  The number of threads may be specific to
either a particular application or a
particular machine
  Example: An application may be allocated
more kernel threads on a multiprocessor than on
a uniprocessor

  Advantages
•  Developers can create as many user threads
as necessary and the corresponding kernel
threads can run in parallel on a multiprocessor
•  When a thread performs a blocking system
call, the kernel can schedule another thread of
execution
•  Allows the operating system to create a
sufficient number of kernel threads

  Examples: Solaris 2, Windows NT/2000

Multithreading models: Many-to-many

18

Solaris 2 as an example

Solaris 2 is a version of UNIX with
support for threads at the kernel and
user levels, SMP, and real-time
scheduling

Standard kernel-level threads
execute all operations within the
kernel. Each LWP processes
(intermediate level of threads – each
process contains at least 1 LWP) has
a kernel level thread. Some KLT run
on the kernel’s behalf and have no
associated LWPs e.g. a thread to
service disk requests.

19

Any one process may have many
ULTs. These ULTs may be scheduled
and switched among the LWPs by the
thread library without kernel
intervention.

ULTs are extremely efficient because
no kernel support is required for
thread creation or destruction, or for
the thread library to context switch
from one ULT to another.

Solaris 2 as an example

20

ULT threads may be either :
•  Bound (Permanently attached to an

LWP)
•  Only that thread runs on LWP and

request the LWP can be dedicated to
a single processor (see rightmost
one)

•  Binding a thread is useful in
situations that require quick
response time e.g. a real-time
applications

•  Unbound (Not permanently attached
to any LWP process)

–  All unbound threads in an
application are multiplexed into the
pool of available LWPs for the
application

Solaris 2 as an example

21

The kernel threads are scheduled by the
kernel’s scheduler and execute on the
CPU or CPUs in the system

If a kernel thread blocks, the CPU is

free to run another kernel thread

–  If the thread that blocked was running
on behalf of an LWP, the LWP blocks
as well

–  The ULT currently attached to the LWP
also blocks

–  If the process has more than one LWP,
the kernel can schedule another LWP

Solaris 2 as an example

22

Examples using processes and threads

 Creating new processes (using fork)
 Creating new threads (using pthreads)

23

Spawning new processes (C++ example)

#include <iostream>
#include <string>

// Required by for routine
#include <sys/types.h>
#include <unistd.h>

using namespace std;

int globalVariable = 2;

main()
{
 string sIdentifier;
 int iStackVariable = 20;

 pid_t pID = fork();
 if (pID == 0) // child
 {
 // Code only executed by child process

 sIdentifier = "Child Process: ";
 globalVariable++;
 iStackVariable++;
 }

 else if (pID < 0) // failed to fork
 {
 cerr << "Failed to fork" << endl;
 exit(1);
 // Throw exception
 }
 else // parent
 {
 // Code only executed by parent process

 sIdentifier = "Parent Process:";
 }

 // Code executed by both parent and child.

 cout << sIdentifier;
 cout << " Global variable: " << globalVariable;
 cout << " Stack variable: " << iStackVariable << endl;
}

OUTPUT
Parent Process: Global variable: 2 Stack variable: 20
Child Process: Global variable: 3 Stack variable: 21

24

Creating a thread

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function(void *ptr);

main()
{
 pthread_t thread1, thread2;
 char *message1 = "Thread 1";
 char *message2 = "Thread 2";
 int iret1, iret2;

 /* Create independent threads each of which will
execute function */

 iret1 = pthread_create(&thread1, NULL,
print_message_function, (void*) message1);

 iret2 = pthread_create(&thread2, NULL,
print_message_function, (void*) message2);

 /* Wait till threads are complete before main
continues. Unless we wait we run the risk of
executing an exit which will terminate the
process and all threads before the threads have
completed */

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 printf("Thread 1 returns: %d\n",iret1);
 printf("Thread 2 returns: %d\n",iret2);
 exit(0);
}

void *print_message_function(void *ptr)
{
 char *message;
 message = (char *) ptr;
 printf("%s \n", message);
}

OUTPUT
Thread 1
Thread 2
Thread 1 returns: 0
Thread 2 returns: 0

25

More on pthread_create

 int pthread_create(pthread_t * thread,
 const pthread_attr_t * attr,
 void * (*start_routine)(void *),
 void *arg);
Arguments

thread: returns the thread identifier
attr: can be NULL for the default options

other options are:
detached state (joinable? Default: PTHREAD_CREATE_JOINABLE. Other option: PTHREAD_CREATE_DETACHED)

scheduling policy (real-time? PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED, SCHED_OTHER)
scheduling parameter
inheritsched attribute (Default: PTHREAD_EXPLICIT_SCHED Inherit from parent thread: PTHREAD_INHERIT_SCHED)

scope (Kernel threads: PTHREAD_SCOPE_SYSTEM User threads: PTHREAD_SCOPE_PROCESS. Pick one or the other
not both.)
stack address (See unistd.h and bits/posix_opt.h _POSIX_THREAD_ATTR_STACKADDR)

stack size (default minimum PTHREAD_STACK_SIZE set in pthread.h),

void * (*start_routine): pointer to the function to be threaded
*arg: pointer to function arguments

26

Many other pthread functions

 pthread_cancel

 pthread_cleanup_pop

 pthread_cleanup_push

 pthread_create

 pthread_equal

 pthread_exit

 pthread_getschedparam

 pthread_getspecific

 pthread_join

•  pthread_key_create

•  pthread key_delete

•  pthread_kill

•  pthread_once

•  pthread_self

•  pthread_setcancelstate

•  pthread_setspecific

•  pthread_sigmask

•  pthread_testcancel

•  sched_yield

27

To get more information on POSIX threads

 The web site:
http://www.opengroup.org/onlinepubs/007908799/

 Or this tutorial:
http://www.llnl.gov/computing/tutorials/pthreads/

 Or Butenhof’s book

 And many other resources on the WWW

 Remember: this is not a course on using threads
 We will use threads, but
 You will need to learn most features on your own
 We will discuss only some essential details

28

Highlights

• We can simplify programming by employing multiple threads / processes

• Threads vs. Processes:

• Thread: a sequential execution stream within a process

• Process: defines the address space and general process attributes

• User-level threads vs. Kernel-level threads:
• Kernel-Level Threads: threads that the O/S kernel “knows about”

• User-Level Threads: threads that the kernel is unaware of

• POSIX programming:

  Processes: fork/join

  pthreads: pthread_create, pthread_join, pthread_detach, etc.

• We can implement a program consisting of multiple tasks.

• But, unless these tasks can talk to each other, they are not very useful.

• Later, we will discuss typical RTOS/OS communication mechanisms.

Communicating between processes and
threads

OS features for exchanging information between concurrent tasks

29

30

Outline

•  In this slide set, you will learn about various mechanisms that are available
for communication between processes.

• To make the discussion concrete, we will focus on the mechanisms
provided in POSIX.1 and POSIX.4

• Signals

• Pipes

• FIFOs

• Message Queues

• Shared Memory

• By the end of these slides, you should be able to look at a RTOS and be
able to understand what communication mechanisms are available.

while (1) {

 Wait until data is available from t or p

 Receive the data from t or p

 Print it to the console

}

while (1) {

 Read pressure
 Compute value to set valve

 Set valve
 Send logging data to s

 Wait a while

} Communication

Synchronization

while (1) {
 Read temperature
 Compute value to set heater
 Set heater
 Send logging data to s
 Wait a while
}

31

32

Communication mechanisms

•  If an RTOS is to support any multiple process/multiple thread design, it
must provide mechanisms for communication between processes or
threads.

• When you go out in the real world, and are evaluating RTOSs for your
real-time system, you need to consider this.

• There are many different mechanisms for providing this communication

• Several of these are provided in POSIX.1/POSIX.4/Pthreads

• By looking at some of these, we will get a good overview of what is
available

• We also need synchronization, but we’ll come back to that later.

33

Communication mechanisms

•  If we have two tasks that want to talk to each other:

1.  Signals: used in POSIX to send a short messages between processes

2.  Pipes: A simple “mailbox” between one process and another

3.  FIFOs: A simple “mailbox” with more than one entry

4.  Messages: Useful for sending a message from one process to another.
Unlike the other choices above, message queues can be set up for any
width. (Not supported in our implementation of POSIX.4.)

5.  Shared Memory

1.  Between Processes: abstraction provided by POSIX

2.  Between Threads: true shared memory

34

POSIX signals

•  Software equivalent of an interrupt or exception

•  When a process “gets” a signal, it knows that something has happened which
requires the process’s attention

•  Might happen as a result of

•  Software exceptions (e.g. divide-by-zero error)

•  So for example, you might define a “handler” that

•  handles “division by zero” errors; Control-C (stop), Control-Z (job control);
Timer expiration

•  Another process explicitly sends a signal

•  Normally, not used to communicate data

•  POSIX.4 signals allow you to attach a 32 bit payload to signals

35

POSIX signals

• Analogous to Hardware Interrupts:

• When programming with Hardware Interrupts, you write an interrupt
service routine (ISR) and set up a vector so when the interrupt occurs,
your ISR is called. The ISR handles the interrupt.

• When programming with signals, you write a signal handling routine.

• You call an O/S routine called sigaction to indicate that the signal
handler should be called when the signal arrives.

• The signal handling routine does all processing to react to the signal.

36

POSIX.1 Signals

•  There are a number of signal types defined, each represented by a number:

•  SIGFPE: Floating Point Exception

•  SIGILL: Illegal Instruction

•  SIGSEGV: Memory access Exception

•  SIGQUIT: User hits a Control-C

•  SIGUSR1: User Signal 1

•  SIGUSR2: User Signal 2

•  (there are several others…)

As a programmer, you can
use

these two signal types

C
o

n
st

a
n

ts
 (

In
te

g
e

rs
)

37

Setting up a signal handler for SIGUSR1 or SIGUSR2

• A signal handler is a function with one argument and void return value

•  void my_signal_handler (int signo)

•  {

•  // Handle your signal here

•  }

• Parameter signo contains the signal type that caused us to get here (eg.
SIGUSR1, SIGUSR2)

38

Telling the OS What to do when a signal arrives

•  int sigaction (SIGNO, &sa, NULL)

Returns type int

(0 means success)

Signal Number (eg.
SIGUSR1 or
SIGUSR2)

Don’t worry
about this for

now

struct sigaction {

 void (*sa_handler)
();
 sigset_t sa_mask;

 int sa_flags;

 …..

}

Signal handler
routine

List of signals that
are masked while we
are in signal handler Flags. Just set to 0 for

now

struct sigaction my_params;

int success;

my_params.sa_handler = my_sig_handler;

my_params.sa_flags = 0;

sigemptyset(&my_params.sa_mask);

success = sigaction (SIGUSR1, &my_params, NULL);

/* From now on, whenever someone sends a SIGUSR1, we will

 enter routine my_sig_handler */

my_sig_handler (int signo)

{

 printf(“I received signal %d\n”,signo);

 /* Do something interesting */

}

39

40

Returns type int

(0 means success)

PID (process id) of
destination process

Signal Number
(e.g., SIGUSR1 or

SIGUSR2)

Sending signals

int kill (pid_t destination_pid, int signo);

41

Problems with POSIX.1 signals

• Only two signals for the user to utilize

• Signals are not queued correctly

• May be delivered out of order

• No information is contained in the signal

• Apart from the fact that it was generated

• High latency

• Need to enter the signal handler every time a signal is triggered

42

POSIX.4 signals

•  Improvements over POSIX.1

• There are more signals (SIGRTMIN to SIGRTMAX)

• The exact number depends on the system

• Up to 32 application-defined signals

• ssh-linux.ece.ubc.ca: 32

• ssh.ece.ubc.ca: 8

• Signals are queued

• Signals can carry a 32-bit payload

• Signals can be prioritized

43

pid (process id) of
destination process

Signal number
(e.g., SIGRTMIN)

The payload you
want to send

union sigval {

 int sival_int;

 void *sival_ptr;

};

Using POSIX.4 signals

 int sigqueue (pid_t destination_pid, int signo, union sigval payload);

44

Using POSIX.4 signals

void my_signal_handler (int signo, siginfo_t *info, void *ignored)

typedef struct {

 ….

 union sigval si_value;

} siginfo_t;

union sigval {

 int sival_int;

 void *sival_ptr;

} ;

Use one of these, not both

(since it is a “union”, both sival_int and sival_ptr refer to the
same

32-bit quantity. You can access this quantity using either
name.)

45

struct sigaction my_params;

int success;

my_params . sa_sigaction = my_sig_handler;

my_params . sa_flags = SA_SIGINFO;

sigemptyset(& my_params . sa_mask);

success = sigaction (SIGRTMIN, &my_params, NULL);

/* From now on, whenever someone sends a SIGUSR1, we will

 enter routine my_sig_handler */

my_sig_handler (int signo, siginfo_t *info, void *ignored))

{
 printf(“I received signal %d\n”,signo);

 printf(“The payload was: %d\n”, info->si_value.sival_int);
}

32 bit payload
received along

with signal

Similar to sa_handler, but
for new POSIX.4 signal

handlers

Queued Signal

Looking for signals without invoking a handler

sigset_t look_for_these;
siginfo_t extra;
int status;
sigemptyset (&look_for_these);
sigaddset (&look_for_these, SIGRTMIN);
sigprocmask(SIG_BLOCK, &look_for_these, NULL);
….
sigreceived = sigwaitinfo(&look_for_these, &extra);
If (sigreceived < 0) {
printf(“Error waiting for signal\n”);
}
else {
printf(“received signal %d, payload %d\n”, sigreceived, extra.
si_value.si_val_int);

}

Sets up a “mask” containing only SIGRTMIN

Tells the OS to not call a signal
handler for this signal

Block (suspend execution) until
signal arrives

We received the signal and can look at the payload

46

47

• struct timespec timeout;

•  timeout.tv_sec = 1;

•  timeout.tv_nsec = 0;

•  /* Set up “look_for_these” as before */

• …

• sigreceived = sigtimedwait (&look_for_these, &extra, &timeout);

•  if (sigreceived < 0) {

•  printf(“Error: we probably timed out\n”);

•  } else {

•  printf(“received signal %d, payload %d\n”, sigreceived,

•  extra. si_value . si_val_int);

•  }

Timeouts

48

Pipes

• Good for pipelined architectures:

• Set it up in a parent process, fork a child, then the child has access to the
other end of the pipe

• Limitation: pipes are unidirectional

• But you can set up two pipes, one going in each direction

49

FIFOs

• A FIFO is simply a pipe with a name.

• Because the pipe has a name, any process can access either end of the
pipe.

• Makes them a bit more flexible than a simple pipe.

• But there are still some problems:

1. Prioritization (all messages have the same priority)

2. Asynchronous operation (no matter how big, the FIFO might eventually fill
up, and then you will block)

3. How many elements in the FIFO? No way to know

4. Lack of structure in the data stream: you just send bytes.

5. Limited numbers of pipes and FIFOs.

50

Message queues

• POSIX.4 provides a mechanism to create named queues:

• Queues can have any depth and width

• Elements in a queue have a priority

• Higher priority elements are popped off the queue before lower priority
elements

• No restrictions on which processes can access a queue

•  Just have to know the queue name

• Problems:

•  If you want to implement something that is not a queue (such as a stack),
these queues won’t help you.

• Not very efficient: have to copy data from sender address space to
receiver address space

• Note: Message queues not supported on ssh-linux.ece.ubc.ca.

51

Shared memory (POSIX.4)

• You can map a region of memory to one or more processes using the
mmap function

• Can share arbitrary data structures

• Quite a lot of overhead

•  If you want shared memory, more natural to use threads

• Remember: threads share an address space

52

Shared memory (Pthreads)

•  int some_shared_data;

•  void *thread1_routine(void *arg)

•  {

• can access variable some_shared_data

•  }

•  ….

•  void *thread2_routine(void *arg)

•  {

•  can access variable some_shared_data

•  }

Both threads see the
same variable. Any
variable can be defined
this way.

Danger! Need some synchronization mechanism
if we are going to use shared memory in this way!

53

• We discussed various mechanisms for communications between
processes

• We focused on POSIX mechanisms.

• The exact details of these mechanisms aren’t so important (except for
the programming assignments).

• What is important is to have a good overview of the range of
communication mechanisms that can be provided and how they
compare.

• The most natural form of communication is shared memory.

• However, to make shared memory work well, synchronization
mechanisms are required.

Highlights

