
Processes and threads 

Multiple threads or processes 
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Kernel-level threads and user-level threads 
POSIX functionality for multithreading 
Communication between processes and threads 



Material covered so far 

• Processor scheduling 
– Periodic tasks with static and dynamic priorities 
• Utilization bounds 

•  Exact tests 

• Operating system support 
– The POSIX standard: an introduction 

• Now: Processes, threads, and POSIX support 
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Example 

3 

We could write separate threads/processes for t, p, 
and s. 
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while (1) { 

   Wait until data is available from t or p 

   Receive the data from t or p 

   Print it to the console 

} 

while (1) { 

   Read pressure 
   Compute value to set valve 

   Set valve 
   Send logging data to s 

   Wait a while 

} Communication  

Synchronization 

while (1) { 
   Read temperature 
   Compute value to set heater 
   Set heater 
   Send logging data to s 
   Wait a while 
} 



Support for multiple processes/threads 

• A real-time OS needs to provide: 

• An API that allows the user to: 

• Create and kill processes and threads 

• Communicate between processes and threads 

• A method to time-slice processes and threads on one 
or more CPUs such that: 

• Hard Deadlines are obeyed (first priority) 

• Soft Deadlines are obeyed (second priority) 

• Deadlocks do not occur (another first priority) 

•  Scheduling policies that we have studied so far (at least in part) 
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Threads and processes 

•  What is the difference between a thread and a process? 

•  Recall that a process includes many things: 

– An address space (defining all the code and data pages) 

– OS resources (e.g., open files) and accounting information 

– Execution state (PC, SP, registers, etc.) 

•  Creating a new process is costly because of  all of  the 

– data structures that must be allocated and initialized 

– FreeBSD: 81 fields, 408 bytes 

•    …which does not even include page tables, etc. 

•  Communicating between processes is costly because 

– Most communication goes through the OS 

– Overhead of  system calls and copying data 
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Rethinking processes 

• What is similar in these cooperating processes? 
– They all share the same code and data (address space) 

– They all share the same privileges 
– They all share the same resources (files, sockets, etc.) 

• What don’t they share? 
– Each has its own execution state: PC, SP, and registers 

• Key idea: Why don’t we separate the concept of  a process 
from its execution state? 

– Process: address space, privileges, resources, etc. 

– Execution state: PC, SP, registers 

• Exec state also called thread of  control, or thread 
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Threads 

• Modern OSes separate the concepts of  processes and 
threads: 
– The thread defines a sequential execution stream within a 

process (PC, SP, registers) 

– The process defines the address space and general process 
attributes (everything but threads of  execution) 

• A thread is bound to a single process 
– Processes, however, can have multiple threads 

• Threads become the unit of  scheduling 
– Processes are now the containers in which threads execute 
– Processes become static, threads are the dynamic entities 
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Threads 

9 

Process!

This is a single-threaded process (a process 
with only one thread) 

You could have multiple interacting processes 
of  this type. 

Each process would maintain its own: address 
space contents 

•  registers 

•  program counter 

•  stack 

•  state of  system calls state of  system calls 

•  all files from the process and their state 



Threads 
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Threads belonging to the same process shares 
its code, data section, & other O/S resources 
e.g. open files, signals, etc. 
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Kernel-level threads vs. user-level threads 

 Another distinction: 

  Kernel-Level Threads: the threads that the O/S kernel “knows 
about”, i.e., the kernel switches between kernel threads using 
some kernel-defined scheduling strategy 

  User-Level Threads: Threads within an application that the kernel 
is unaware of 
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User-level threads (ULT) 
–  Supported above the kernel 

–  Exist only within a process 
–  Implemented by a thread library at user level 
–  ULTs in process A  cannot access a ULTs in 

process B 
–  Used by programmers to handle multiple 

flows of  control within a program 
–  Library provides support for thread 

creation, scheduling management with no 
support from the kernel 

–  Kernel is unaware of  user level threads.  All 
thread creation and scheduling are done in 
user space without the need for kernel 
intervention – thus ULTs are generally fast to 
create and manage 

CPU"

Process A 

Kernel Level 
Threads 

Examples 
 POSIX Pthreads 
 Solaris threads 
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Kernel threads 
–  Supported directly by O/S 
–  The O/S will have a separate thread 

for each process and that will perform 
O/S activities on behalf  of  the O/S 

–  The kernel performs thread creation, 
scheduling & management in kernel 
space 

–  Thread management is carried out by 
O/S and kernel threads are generally 
slower to crate and manage than user 
threads 

CPU"

Process A"

Kernel Level"
Threads"

Examples 
 - Windows 95/98/NT/2000 

  - Solaris 
 - Tru64 UNIX 
 - Linux 
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Multithreading modes 

 When an OS supports more than one kernel thread per process, 
then  

 possible to multiplex the execution of different sets of user 
threads on  

 different kernel threads  

 Different models exist for mixing and matching kernel and user 
threads: 
 One-to-one 
 Many-to-one 
 Many-to-many 
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Multithreading models: Many-to-one 

 Maps many ULTs to one KLT 
 Advantage: 

• Thread management is carried out 
in user space so it is efficient 

 Disadvantages: 
• The entire process will block if a 

thread makes a blocking system 
call 

• Only one thread can access the 
kernel at a time, thus multiple 
threads are unable to run in parallel 
on multiprocessors 

 Example: Solaris 2 
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Multithreading models: One-to-one 

  Map each user thread to a kernel 
thread 

  Advantages: 
• Provides more concurrency by 

allowing another thread to run when a 
thread makes a blocking system call 

• Allows multiple threads to run in 
parallel on multiprocessors  

  Disadvantages: 
• Creating a user thread requires 

creating a corresponding kernel thread 
which can burden the performance of 
an application 

  Most implementations of this model 
restrict the number of threads 
supported by the system 

  Examples:  Windows NT, 2000, OS/2 
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  Multiplexes many ULTs to a smaller or equal 
number of kernel threads 

  The number of threads may be specific to 
either a particular application or a 
particular machine 
  Example: An application may be allocated 
more kernel threads on a multiprocessor than on 
a uniprocessor 

  Advantages 
•  Developers can create as many user threads 
as necessary and the corresponding kernel 
threads can run in parallel on a multiprocessor 
•  When a thread performs a blocking system 
call, the kernel can schedule another thread of 
execution 
•  Allows the  operating system to create a 
sufficient number of kernel threads 

  Examples:  Solaris 2, Windows NT/2000 

Multithreading models: Many-to-many 
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Solaris 2 as an example 

Solaris 2 is a version of  UNIX with 
support for threads at the kernel and 
user levels, SMP, and real-time 
scheduling 

Standard kernel-level threads 
execute all operations within the 
kernel.  Each LWP processes 
(intermediate level of  threads – each 
process contains at least 1 LWP) has 
a kernel level thread.  Some KLT run 
on the kernel’s behalf  and have no 
associated LWPs e.g. a thread to 
service disk requests. 
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Any one process may have many 
ULTs.  These ULTs may be scheduled 
and switched among the LWPs by the 
thread library without kernel 
intervention. 

ULTs are extremely efficient because 
no kernel support is required for 
thread creation or destruction, or for 
the thread library to context switch 
from one ULT to another. 

Solaris 2 as an example 
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ULT threads may be either : 
•  Bound (Permanently attached to an 

LWP) 
•  Only that thread runs on LWP and 

request the LWP can be dedicated to 
a single processor (see rightmost 
one) 

•  Binding a thread is useful in 
situations that require quick 
response time e.g. a real-time 
applications 

•  Unbound (Not permanently attached 
to any LWP process)   

–  All unbound threads in an 
application are multiplexed into the 
pool of  available LWPs for the 
application 

Solaris 2 as an example 
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The kernel threads are scheduled by the 
kernel’s scheduler and execute on the 
CPU or CPUs in the system 

If  a kernel thread blocks, the CPU is  

free to run another kernel thread 

–  If  the thread that blocked was running 
on behalf  of  an LWP, the LWP blocks 
as well 

–  The ULT currently attached to the LWP 
also blocks 

–  If  the process has more than one LWP, 
the kernel can schedule another LWP 

Solaris 2 as an example 
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Examples using processes and threads 

 Creating new processes (using fork) 
 Creating new threads (using pthreads) 
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Spawning new processes (C++ example) 

#include <iostream>
#include <string>

// Required by for routine
#include <sys/types.h>
#include <unistd.h>

using namespace std;

int globalVariable = 2;

main()
{
   string sIdentifier;
   int    iStackVariable = 20;

   pid_t pID = fork();
   if (pID == 0)                // child
   {
      // Code only executed by child process

      sIdentifier = "Child Process: ";
      globalVariable++;
      iStackVariable++;
    }

    else if (pID < 0)            // failed to fork
    {
        cerr << "Failed to fork" << endl;
        exit(1);
        // Throw exception
    }
    else                                   // parent
    {
      // Code only executed by parent process

      sIdentifier = "Parent Process:";
    }

    // Code executed by both parent and child.

    cout << sIdentifier;
    cout << " Global variable: " << globalVariable;
    cout << " Stack variable: "  << iStackVariable << endl;
}

OUTPUT
Parent Process: Global variable: 2 Stack variable: 20
Child Process:  Global variable: 3 Stack variable: 21
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Creating a thread 

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function( void *ptr );

main()
{
     pthread_t thread1, thread2;
     char *message1 = "Thread 1";
     char *message2 = "Thread 2";
     int  iret1, iret2;

    /* Create independent threads each of which will 
execute function */

     iret1 = pthread_create( &thread1, NULL, 
print_message_function, (void*) message1);

     iret2 = pthread_create( &thread2, NULL, 
print_message_function, (void*) message2);

     /* Wait till threads are complete before main 
continues. Unless we wait we run the risk of 
executing an exit which will terminate the 
process and all threads before the threads have 
completed */

     pthread_join( thread1, NULL);
     pthread_join( thread2, NULL); 

     printf("Thread 1 returns: %d\n",iret1);
     printf("Thread 2 returns: %d\n",iret2);
     exit(0);
}

void *print_message_function( void *ptr )
{
     char *message;
     message = (char *) ptr;
     printf("%s \n", message);
}

OUTPUT
Thread 1
Thread 2
Thread 1 returns: 0
Thread 2 returns: 0
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More on pthread_create 

    int pthread_create(pthread_t * thread, 
                       const pthread_attr_t * attr,
                       void * (*start_routine)(void *), 
                       void *arg);
Arguments 

thread: returns the thread identifier 
attr: can be NULL for the default options 

other options are: 
detached state (joinable? Default: PTHREAD_CREATE_JOINABLE. Other option: PTHREAD_CREATE_DETACHED) 

scheduling policy (real-time? PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED, SCHED_OTHER) 
scheduling parameter 
inheritsched attribute (Default: PTHREAD_EXPLICIT_SCHED Inherit from parent thread: PTHREAD_INHERIT_SCHED) 

scope (Kernel threads: PTHREAD_SCOPE_SYSTEM User threads: PTHREAD_SCOPE_PROCESS. Pick one or the other 
not both.) 
stack address (See unistd.h and bits/posix_opt.h _POSIX_THREAD_ATTR_STACKADDR) 

stack size (default minimum PTHREAD_STACK_SIZE set in pthread.h), 

void * ( *start_routine ): pointer to the function to be threaded 
*arg: pointer to function arguments 
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Many other pthread functions 

 pthread_cancel 

 pthread_cleanup_pop 

 pthread_cleanup_push 

 pthread_create 

 pthread_equal 

 pthread_exit 

 pthread_getschedparam 

 pthread_getspecific 

 pthread_join 

•  pthread_key_create 

•  pthread key_delete 

•  pthread_kill 

•  pthread_once 

•  pthread_self  

•  pthread_setcancelstate 

•  pthread_setspecific 

•  pthread_sigmask 

•  pthread_testcancel 

•  sched_yield 
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To get more information on POSIX threads 

 The web site: 
http://www.opengroup.org/onlinepubs/007908799/  

 Or this tutorial: 
http://www.llnl.gov/computing/tutorials/pthreads/ 

 Or Butenhof’s book 

 And many other resources on the WWW 

 Remember: this is not a course on using threads 
 We will use threads, but  
 You will need to learn most features on your own 
 We will discuss only some essential details 
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Highlights 

• We can simplify programming by employing multiple threads / processes 

• Threads vs. Processes: 

• Thread: a sequential execution stream within a process  

• Process: defines the address space and general process attributes 

• User-level threads vs. Kernel-level threads: 
• Kernel-Level Threads: threads that the O/S kernel “knows about”  

• User-Level Threads: threads that the kernel is unaware of 

• POSIX programming: 

  Processes:  fork/join 

  pthreads:  pthread_create, pthread_join, pthread_detach, etc. 

• We can implement a program consisting of multiple tasks.  

• But, unless these tasks can talk to each other, they are not very useful. 

• Later, we will discuss typical RTOS/OS communication mechanisms. 



Communicating between processes and 
threads 

OS features for exchanging information between concurrent tasks 
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Outline 

•  In this slide set, you will learn about various mechanisms that are available 
for communication between processes. 

• To make the discussion concrete, we will focus on the mechanisms 
provided in POSIX.1 and POSIX.4 

• Signals 

• Pipes 

• FIFOs 

• Message Queues 

• Shared Memory 

• By the end of these slides, you should be able to look at a RTOS and be 
able to understand what communication mechanisms are available. 



while (1) { 

   Wait until data is available from t or p 

   Receive the data from t or p 

   Print it to the console 

} 

while (1) { 

   Read pressure 
   Compute value to set valve 

   Set valve 
   Send logging data to s 

   Wait a while 

} Communication  

Synchronization 

while (1) { 
   Read temperature 
   Compute value to set heater 
   Set heater 
   Send logging data to s 
   Wait a while 
} 
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Communication mechanisms 

•  If an RTOS is to support any multiple process/multiple thread design, it 
must provide mechanisms for communication between processes or 
threads. 

• When you go out in the real world, and are evaluating RTOSs for your 
real-time system, you need to consider this. 

• There are many different mechanisms for providing this communication 

• Several of these are provided in POSIX.1/POSIX.4/Pthreads 

• By looking at some of these, we will get a good overview of what is 
available 

• We also need synchronization, but we’ll come back to that later. 
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Communication mechanisms 

•  If we have two tasks that want to talk to each other: 

1.  Signals:  used in POSIX to send a short messages between processes 

2.  Pipes:  A simple “mailbox” between one process and another 

3.  FIFOs: A simple “mailbox” with more than one entry 

4.  Messages: Useful for sending a message from one process to another.  
Unlike the other choices above, message queues can be set up for any 
width. (Not supported in our implementation of POSIX.4.) 

5.  Shared Memory 

1.   Between Processes: abstraction provided by POSIX 

2.   Between Threads:  true shared memory 
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POSIX signals 

•  Software equivalent of an interrupt or exception 

•  When a process “gets” a signal, it knows that something has happened which 
requires the process’s attention 

•  Might happen as a result of 

•  Software exceptions (e.g. divide-by-zero error) 

•  So for example, you might define a “handler” that 

•  handles “division by zero” errors; Control-C (stop), Control-Z (job control); 
Timer expiration 

•  Another process explicitly sends a signal 

•  Normally, not used to communicate data 

•  POSIX.4 signals allow you to attach a 32 bit payload to signals 
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POSIX signals 

• Analogous to Hardware Interrupts: 

• When programming with Hardware Interrupts, you write an interrupt 
service routine (ISR) and set up a vector so when the interrupt occurs, 
your ISR is called.  The ISR handles the interrupt. 

• When programming with signals, you write a signal handling routine.  

• You call an O/S routine called sigaction to indicate that the signal 
handler should be called when the signal arrives.  

• The signal handling routine does all processing to react to the signal. 
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POSIX.1 Signals 

•  There are a number of signal types defined, each represented by a number: 

•  SIGFPE:  Floating Point Exception 

•  SIGILL:  Illegal Instruction 

•  SIGSEGV:  Memory access Exception 

•  SIGQUIT:  User hits a Control-C 

•  SIGUSR1:  User Signal 1 

•  SIGUSR2:  User Signal 2 

•  (there are several others…) 

As a programmer, you can 
use  

these two signal types 
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Setting up a signal handler for SIGUSR1 or SIGUSR2 

• A signal handler is a function with one argument and void return value 

•   void  my_signal_handler (int signo)  

•       { 

•               // Handle your signal here 

•       } 

• Parameter signo contains the signal type that caused us to get here (eg. 
SIGUSR1, SIGUSR2) 
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Telling the OS What to do when a signal arrives 

•                              int sigaction ( SIGNO, &sa, NULL) 

Returns type int 

(0 means success) 

Signal Number (eg. 
SIGUSR1 or 
SIGUSR2) 

Don’t worry 
about this for 

now 

struct sigaction { 

     void (*sa_handler) 
();   
     sigset_t sa_mask; 

     int sa_flags; 

     ….. 

} 

Signal handler 
routine 

List of  signals that 
are masked while we 
are in signal handler Flags.  Just set to 0 for 

now 



struct  sigaction  my_params; 

int  success; 

my_params.sa_handler  =  my_sig_handler; 

my_params.sa_flags  =  0; 

sigemptyset(&my_params.sa_mask); 

success = sigaction (SIGUSR1,  &my_params,  NULL); 

/* From now on, whenever someone sends a SIGUSR1, we will  

    enter routine my_sig_handler  */ 

my_sig_handler (int signo) 

{ 

      printf(“I received signal %d\n”,signo); 

      /* Do something interesting */ 

} 
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Returns type int 

(0 means success) 

PID (process id) of  
destination process 

Signal Number 
(e.g., SIGUSR1 or 

SIGUSR2) 

Sending signals 

int  kill  (pid_t  destination_pid,   int  signo); 
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Problems with POSIX.1 signals 

• Only two signals for the user to utilize 

• Signals are not queued correctly 

• May be delivered out of order 

• No information is contained in the signal 

• Apart from the fact that it was generated 

• High latency 

• Need to enter the signal handler every time a signal is triggered 
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POSIX.4 signals 

•  Improvements over POSIX.1 

• There are more signals  (SIGRTMIN to SIGRTMAX) 

• The exact number depends on the system 

• Up to 32 application-defined signals 

• ssh-linux.ece.ubc.ca: 32 

• ssh.ece.ubc.ca: 8 

• Signals are queued 

• Signals can carry a 32-bit payload 

• Signals can be prioritized 
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pid (process id) of  
destination process 

Signal number 
(e.g., SIGRTMIN) 

The payload you 
want to send 

union sigval { 

    int sival_int; 

    void *sival_ptr; 

}; 

Using POSIX.4 signals 

   int  sigqueue  (pid_t  destination_pid,   int  signo,  union sigval payload); 
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Using POSIX.4 signals 

void  my_signal_handler (int signo,  siginfo_t *info,  void *ignored)  

typedef  struct { 

    …. 

    union sigval si_value; 

} siginfo_t; 

union sigval { 

    int sival_int; 

    void *sival_ptr; 

} ; 

Use one of  these, not both 

(since it is a “union”, both sival_int and sival_ptr refer to the 
same 

32-bit quantity.  You can access this quantity using either 
name.) 
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struct  sigaction  my_params; 

int  success; 

my_params . sa_sigaction  =  my_sig_handler; 

my_params . sa_flags  =  SA_SIGINFO; 

sigemptyset( & my_params . sa_mask); 

success = sigaction (SIGRTMIN,  &my_params,  NULL); 

/* From now on, whenever someone sends a SIGUSR1, we will  

    enter routine my_sig_handler  */ 

my_sig_handler (int signo, siginfo_t *info, void *ignored)) 

{ 
      printf(“I received signal %d\n”,signo); 

      printf(“The payload was: %d\n”, info->si_value.sival_int); 
} 

32 bit payload 
received along 

with signal 

Similar to sa_handler, but 
for new POSIX.4 signal 

handlers 

Queued Signal 



Looking for signals without invoking a handler 

sigset_t  look_for_these; 
siginfo_t  extra; 
int status; 
sigemptyset ( &look_for_these ); 
sigaddset ( &look_for_these,  SIGRTMIN ); 
sigprocmask( SIG_BLOCK,  &look_for_these,  NULL ); 
…. 
sigreceived = sigwaitinfo( &look_for_these,  &extra ); 
If  (sigreceived < 0) {  
printf(“Error waiting for signal\n”); 
} 
else { 
printf(“received signal %d, payload %d\n”, sigreceived, extra. 
si_value.si_val_int); 

}  

Sets up a “mask” containing only SIGRTMIN 

Tells the OS to not call a signal 
handler for this signal 

Block (suspend execution) until 
signal arrives 

We received the signal and can look at the payload 
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• struct  timespec  timeout; 

•  timeout.tv_sec = 1; 

•  timeout.tv_nsec = 0; 

•  /* Set up “look_for_these” as before */ 

• … 

• sigreceived = sigtimedwait ( &look_for_these,  &extra, &timeout ); 

•  if (sigreceived < 0) {  

•   printf(“Error: we probably timed out\n”); 

•  } else { 

•   printf(“received signal %d, payload %d\n”, sigreceived, 

•                                          extra. si_value . si_val_int); 

•  }  

Timeouts 
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Pipes 

• Good for pipelined architectures: 

• Set it up in a parent process, fork a child, then the child has access to the 
other end of the pipe 

• Limitation: pipes are unidirectional 

• But you can set up two pipes, one going in each direction 
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FIFOs 

• A FIFO is simply a pipe with a name. 

• Because the pipe has a name, any process  can access either end of the 
pipe. 

• Makes them a bit more flexible than a simple pipe. 

• But there are still some problems: 

1. Prioritization (all messages have the same priority) 

2. Asynchronous operation (no matter how big, the FIFO might eventually fill 
up, and then you will block) 

3. How many elements in the FIFO?  No way to know 

4. Lack of structure in the data stream: you just send bytes. 

5. Limited numbers of pipes and FIFOs. 
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Message queues 

• POSIX.4 provides a mechanism to create named queues: 

• Queues can have any depth and width 

• Elements in a queue have a priority 

• Higher priority elements are popped off the queue before lower priority 
elements 

• No restrictions on which processes can access a queue 

•  Just have to know the queue name 

• Problems: 

•  If you want to implement something that is not a queue (such as a stack), 
these queues won’t help you. 

• Not very efficient: have to copy data from sender address space to 
receiver address space 

• Note: Message queues not supported on ssh-linux.ece.ubc.ca. 
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Shared memory (POSIX.4) 

• You can map a region of memory to one or more processes using the 
mmap function 

• Can share arbitrary data structures 

• Quite a lot of overhead 

•  If you want shared memory, more natural to use threads 

• Remember: threads share an address space 
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Shared memory (Pthreads) 

•  int some_shared_data; 

•  void *thread1_routine(void *arg) 

•  {  

• can access variable some_shared_data  

•  } 

•  …. 

•  void *thread2_routine(void *arg) 

•  { 

•      can access variable some_shared_data 

•  } 

Both threads see the 
same variable.  Any 
variable can be defined 
this way. 

Danger! Need some synchronization mechanism 
if  we are going to use shared memory in this way! 
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• We discussed various mechanisms for communications between 
processes 

• We focused on POSIX mechanisms. 

• The exact details of these mechanisms aren’t so important (except for 
the programming assignments).   

• What is important is to have a good overview of the range of 
communication mechanisms that can be provided and how they 
compare. 

• The most natural form of communication is shared memory. 

• However, to make shared memory work well, synchronization 
mechanisms are required. 

Highlights 


