Software Fault Tolerance

EECE 513: Design of Fault-tolerant
Digital Systems

Learning Objectives

Define Software Fault-tolerance and enumerate
its challenges

List three diversity-based techniques and
evaluate their respective pros and cons

Use robust data structures for structural integrity

Use critical memory for semantic integrity

What is Software Fault Tolerance?

e Three alternative definitions

1. Management of faults originating from
defects in design or implementation of
software components

2. Management of hardware failures in software
3. Management of network failures

We will follow the classical definition (1) due to
Avizienis in 1977

Motivation: Software Fault Tolerance

* Usual method of software reliability is fault avoidance using good software
engineering methodologies

e Large and complex systems => fault avoidance not successful

— Rule of thumb fault density in software is 10-50 per 1,000 lines of code for
good software and 1-5 after intensive testing using automated tools

 Redundancy in software needed to detect, isolate, and recover from
software failures

 Hardware fault tolerance easier to assess

e Software is difficult to prove correct

HARDWARE FAULTS SOFTWARE FAULTS

1. Faults time-dependent Faults time-invariant

2. Duplicate hardware detects Duplicate software not effective
3. Random failure is main cause Complexity is main cause

Challenges

Improvements in software development methodologies
reduce the incidence of faults, yielding fault avoidance

Need for test and verification

Formal verification techniques, such as proof of
correctness, can be applied to only small programs

Potential exists of faulty translation of user requirements

Conventional testing is hit-or-miss. “Program testing can
show the presence of bugs but never show their absence,
- Dijkstra, 1972.

There is a lack of good fault models for software defects

)

Features of software faults

* Mature software exhibits nearly constant
failure rate

— Bathtub curve for modeling entire lifetime from
release to retirement

* Number of failures is correlated with
— Execution time
— Code density
— Software timing,
— Synchronization points

Approaches to Software Fault
Tolerance

ROBUSTNESS: The extent to which software continues to operate
despite introduction of invalid inputs.

Example: 1. Check input data
=>ask for new input
=>use default value and raise flag
2. Self checking software

FAULT CONTAINMENT: Faults in one module should not affect other
modules.

Example: Reasonable checks

Watchdog timers
Overflow/divide-by-zero detection
Assertion checking

FAULT TOLERANCE: Provides uninterrupted operation in presence of
program fault through multiple implementations of a given function

Learning Objectives

Define Software Fault-tolerance and enumerate
its challenges

List three diversity-based techniques and
evaluate their respective pros and cons

Use robust data structures for structural integrity

Use critical memory for semantic integrity

Diversity

* Diversity as a technique for fault-tolerance goes back
to the British Astronmer, Lord Maskelyne [Anh-2009]
— Used two computers (human) to calculate lunar tables,

when moon is at peak and its lowest point and compare
the values

* Charles Babbage used Diversity in analytical engine

“When the formula to be computed 1s very complicated, it
may be algebraically arranged for computation in two
or more totally distinct ways, and two or more sets of
cards may be made. If the same constants are now
employed with each set, and if under these
circumstances the results agree, we may be quite secure
of the accuracy of them all.”

Multi-Version Software Fault Tolerance

e Use of multiple versions (or “variants”) of a piece of
software

* Different versions may execute in parallel or in
sequence

* Rationale is that multiple versions will fail differently,
i.e., for different inputs

e Versions are developed from common specifications

* Three main approaches
— N-version Programming
— Recovery Blocks
— N Self-Checking Programming

N-Version Programming

Version 1

Due to Al Avizienis,
first appeared in CompSAC 1977

Input Output

All versions designed to satisfy same basic
requirement
Decision of output comparison based on voting

Different teams build different versions to avoid
correlated failures

Pros and Cons of NVP

— NVP relies on independence among the versions
* But not always true in practice [Knight and Leveson’83]

— Why does this happen ?

* People make same mistakes, e.g., incorrect treatment of
boundary conditions
* Some parts of a problem are more difficult than others -

similarity in programmer’s view of “difficult” regions
 Specifications may themselves be incorrect/incomplete
— Note: This does not mean NVP is useless. Rather, it
does not always mean that NVP will detect S/W faults.
Its reliability is upper-bounded by independence.

Recovery Blocks

Checkpoint I
Memory .
L — Due to Brian Randell,

Checkpoints

v

first appeared in ToSE 1975

Primary

Version

Alternate ,
Output

Version 1

Alternate

Version n

Checkpoint and restart approach

— Try a version, if error detected through acceptance test, try a different
version

— Ordering of the different versions according to reliability
Checkpoints needed to provide valid operational state for subsequent
versions (hence, discard all updates made by a version)

Acceptance test needs to be faster and simpler than actual code

Pros and Cons of RB

* Advantages

— No performance or area

overheads in the fault-free
case, except the state
saving overhead.

— Allows gradual evolution of

software components. Old
versions can be replaced
with new ones, and used
as secondary.

— Nice hierarchical design

(structured approach)

e Disadvantages
— Reliability depends on the

coverage of the acceptance
test. Acceptance test
should be independent of
the main version, but
faster (e.g., range checks)

State saving mechanisms
need to be employed.

Requires transaction-like
semantics. Cannot always
undo side-effects.

N Self-Checking Programming

Version 1

Acceptance
Test 1

Input

Version n

Acceptance
Testn

Due to J. C. Laprie,

FTCS 87
Voter

Output

* Multiple software versions with structural

variations of RB and NVP

* Use of separate acceptance tests for each version

Pros and Cons of NSCP

* Advantages Cons

— Combines advantages of — Incurs more overhead
NVP and RBs than NVP and ‘N’ times

— Ensure that some errors the overhead of RB
are caught before the — Does not protect against
voting stage errors in specifications

— Provides error — Extra effort to derive
containment acceptance tests and

— Almost no disruption in write the N-versions

service due to faults

Similarity to H/W Fault-tolerance

* RBis equivalent to the stand-by sparing (of
passive dynamic redundancy)

* NVP is equivalent to N-modular redundancy
(static redundancy)

* NSCP is equivalent to active dynamic redundancy.
A self-checking component results either from:

— Association of an acceptance test to a version

— Association of two variants with a comparison
algorithm

Reliability Analysis of Multi-Version
Approaches

Three postulates of software development [Sha-2000, IEEE Software]

P1: Complexity Breeds Bugs: Everything else being equal, the more complex
the software project is, the harder it is to make it reliable.

P2: All Bugs are Not Equal: You fix a bunch of obvious bugs quickly, but finding
and fixing the last few bugs is much harder, if you can ever hunt them
down.

P3: All Budgets are Finite: There is only a finite amount of effort (budget) that
we can spend on any project. That is, if we go for n version diversity, we
must divide the available effort n-way.

 We attempt to analyze the reliability of the three systems using methods
from combinatorial modeling. We assume the following:

— R(t) =e- At

— Failure rate A o« 1/Effort (E)

— Failure rate A o« Complexity (C)
— LetA=kC/E

Reliability Vs Effort Vs Complexity

Effort Versus Reliability

0.9
0.8
0.7

: -1
0.4 C — 2

0.2 _C = 3

0.1

Reliability

= exp(-kCt/E)

simplex

Reliability of NVP vs. single version

At time =1
1
08 -
— R(simplex)
— R(NVP-3)
2 06
S
K]
X 04 /
02
0 T
0 2 4 6 8 10 12
Effort

simplex

For Effort = 1
1 — R(simplex)
. \ —R(NVP-3)
el AN
NI
NEEAN
R = exp(-kCt/E)

Ryvp= 3exp(-6kCVE)
- 2exp(-9kCt/E)

Reliability of RB vs. Simplex

1.2

1
>
% 0.6 f—/ R(simplex)
o / R(RB-3)
(14

0.4 / R(RB-5)

0.2

0 ‘ ' ‘
2 4 6 8 10 12

o
m
=1}
®]
=3

— exp(-kCY/E) Ry = 1-(1-exp(-3kCUE))"3

Rsimplex

Effort Vs. Complexity

1.2
1 /
z /
S 06 R(RB-2)
)
(14
0.4 -—R(RB-2, C=1,0.1)
0.2 —Simplex
O ! ! ! ! !
0 2 4 6 8 10 12
Effort

Reducing complexity of alternatives drastically improves the
availability. So using simpler alternates 1s good !

Diversity: Summary

* Simplicity often yields higher benefits than
diversity and its associated complexity

* Given a choice between increasing effort for a
single component and building > 2 diverse
components with less effort, prefer the former

* Recovery blocks with simpler alternates do
offer benefits over Simplex architecture

Learning Objectives

Define Software Fault-tolerance and enumerate
its challenges

List three diversity-based techniques and
evaluate their respective pros and cons

Use robust data structures for structural integrity

Use critical memory for semantic integrity

Robust Data Structures: Goals

 The goal is to find storage structures that are
robust in the face of errors and failures

 What do we want to preserve?

Semantic integrity - the data is not corrupted

Structural integrity - the correct data
representation is preserved

Robust Data Structure: Definition

A robust data structure contains redundant data which
allow erroneous changes to be detected, and corrected
— a change is defined as an elementary (e.g., as single word)

modification to the encoded form (e.g., data structure
representation in memory) of a data structure instance

— structural redundancy

e a stored count of the numbers of nodes in a structure instance
e identifier fields

e additional pointers

Example: Linked Lists

* Non-robust data structure: No redundant
information to detect/recover from pointer errors

header node node
data data
next > next » NULL

0-detectable and 0-correctable
changing one pointer to NULL can
reduce any list to empty list

Example: Robust List
e Additions for improving robustness

e an identifier field to each node

* replace the NULL pointer in the last node by pointer to the

header of the list

e stores a count of the number of nodes

header
H-ID

count =3

node

node

ID

ID

data

data

next

next t:::2>

1-detectable and 0-correctable

.change to the count can be detected by comparing it against the number of nodes

found by following pointers

.change to the pointer may be detected by a mismatch in count number or
the new pointer points to a foreign node (which cannot have a valid identifier)

Example: Robust Double Linked List

e Additions for improving robustness: Make it a
double linked list

header node node
H-ID ID ID
data data
count =3
| next next next
..-'---previous preViOUS e previous

° 0
oooooooooo
oo

2-detectable and 1-correctable
the data structure has two independent, disjoint sets of pointers,
each of which may be used to reconstruct the entire list

Error Correcting in Double-Linked List

e Scan the list in the forward direction until an identifier field error or
forward/backward pointer mismatch is detected

 When this happens scan the list in the reverse direction until a similar

error is detected The forward scan detects a mismatch
. in Node B and sets

* Re@?'r the data structure Local_Ptrg = B (local node’s pointer)

Header Node Node @ Next_Ptrg = F (pointer to the next node)
The reverse scan detects a mismatch

H -ID ID ID .
in Node C and sets

_ data | _ data | Local_Ptr. = C (local node’s pointer)
count =3 Back_Ptr. = B (pointer to the previous node)
Correction
(Local_Ptrg == Back_Ptr;) =

Next_Ptrg := Local_Ptr.
1p-i-e], (Next_Ptr, = C)
?

Robust Data Structures: Summary

 Advantages
— Incurs much lower overheads than full duplication
— Can detect both S/W and H/W errors that corrupt DS
— Independent of programming language/compiler
* Limitations
— Not transparent to the application

— Best in tolerating errors which corrupt the structure of
the data (not the semantics)

— Increased complexity of the update routines may
make them error prone — error propagation

Learning Objectives

Define Software Fault-tolerance and enumerate
its challenges

List three diversity-based techniques and
evaluate their respective pros and cons

Use robust data structures for structural integrity

Use critical memory for semantic integrity

Background: Memory Corruption

 Buffer-overflows

— Stack and Heap
c buffers

— Can corrupt

both control
0 99 and non-
control data

c[101] = “\nV\’;

* Dangling
pl p2 Pointers
\T/ — Use after free
= — Aliased with
0 9 used memory

Memory Corruption Errors :
“Solutions”

* Write code using secure programming practlces
— Requires tremendous programmer effort zﬁgﬂ“e 5
— Loading of unsafe libraries and plugins

€ sookusTs v<;&5-

ertmg
Security Tools
and Explmts

 Statically check code for memory corruption errors
— False-positives, requires manual inspection to understand
— Developers often reluctant to fix non-exploitable bugs

 Dynamically check all memory writes

— Prohibitive overheads in practice (60 to 100%)
— “All or nothing” technique — requires libraries’ source code

34

Take-away Observations/Goals

* Protection from all classes of memory errors

* Must not require rewriting of code in safe
languages or checking all library code

* Overhead must be configurable by the
programmer — depending on application

How do we satisfy all three goals ?

Approach : Critical Data Protection

* Observation: Some application data is much more
important than other data — Critical Data

— Examples: Bank account information, game player
data, document information in word-processor

— ldentified by programmer based on appln. semantics

* Goal: Selectively protect only the critical data
— Many applications are inherently tolerant of errors

— Degraded outputs are acceptable as long as it does
not corrupt the critical data or cause massive failures

— Provide “good enough” reliability at low cost

Critical Data Protection: Advantages

Critical

Corruption due
DE]E

to memory errors

Modifies Modifies only the

critical application non-critical
data application data

Critical data integrity should be
preserved even if other data is
corrupted

Apply incrementally to legacy
systems, based on protection

required and acceptable
performance overhead

Should not need the entire

application’s source code — only the
part that modifies the critical data

37

Data

Critical Memory: Abstraction

critical int balance;

int x,y;

balance = 100;

if (balance<min)) {

chargeCredit();

} else {
X +=10;
y += 10;
}

balance

critical
data

* Critical Memory:
Abstract memory model

— Protect and reason about
critical data consistency

e Need to mark critical
data (similar to const)

* |dentify where CM is
— Read from (cload)
— Written to (cstore)

38

Critical Memory: Model

cstorex,5 storex,2 loadx

111

cload x

returns 2

returns 5

Critical store writes to both
NM and CM locations

Normal stores write to NM

Normal loads read from NM

Critical load returns CM
value
— Can correct value in NM

— Can trap on mismatch (debug
mode)

39

Critical Memory: Example

critical int balance ;
int x, y, buffer[10];

balance = 100;

if (balance < minH-

NM
CM

map_critical(&balance);

templ = 100;
Cstore(&balance, temp1);
temp = load(buffer + 15);

temp2 = Cload(&balance);
if (temp2 < min) {

100 300 100
100 100 100

Critical Memory preserves its contents even under memory errors

40

NM

CM

Critical Memory: Library Functions

critical int balance ;
int x, y, buffer[10]; libFunction(int™ xp, int* yp)

balance = 100; {
*xp = balance;

libFunction(&x, &yjJ; *yp =2 * balance;
balance = *xp + *yp;

// Check value of balance

promote(&balance);

Critical Memory allows local reasoning about critical data

41

Samurai : Implementation

Randomization to
minimize correlated
errors

Replica 1

Shadow pointer 1

Critical
store

regular store
Memory error !

Shadow pointer 2

Object

Meta-data protected
with checksums

contents

=)

Critical
load

Replica 2

/ Repair on

mismatch

42

Samurai: Experimental Setup

* Implementation
— Automated compiler pass to instrument critical loads and stores
— Runtime library for critical data allocation/de-allocation (C++)

* Protected critical data in 5 applications (SPEC2k)
— Chose data that is crucial for end-to-end correctness of program
— Evaluation of performance overhead by direct measurements
— Fault-injections into critical data to evaluate their resilience

 Also Protected critical data in libraries
— STL List Class: Backbone of list structure. Used in web server.
— Memory allocator: Heap meta-data (object size + free list).

Samurai: Application Overheads

Performance Overhead

3 /- -\ Pathologic
Z. /D
55 al worst-
c > case
_§1 c behavior
3) 1.03 1.08 1.01 1.08 W Baseline
0 » w —

vpr crafty parser rayshade gzip

44

Samurai: Memory Allocator Results

140

120

100

80

60

40

20

Slowdowns

espresso

cfrac

p2c Lindsay Boxed-Sim

W Kingsley M Samurai

Mudlle

Average

45

Samurai: Fault Injection Methodology

* Injections into critical data
— Corrupted objects on Samurai heap, one at a time

— Injected more faults into more populated heap
regions (Weighted fault-injection policy)

— Outcome: success, failure, false-positive

* Injections into non-critical data
— Measure propagation to critical data
— Corrupted results of random store instructions
— Compared memory traces of verified stores
— QOutcomes: control error, data error, pointer error

Fault Injection into Non-Critical Data

App Number |Control | Data Pointer | Assertion | Total
of Trials | Errors Errors Errors Violations | Errors
vpr 550 (199) |0 203 (0) [1(0) 2 (2) 203 (0)
crafty 55 (18) 12 (7) 9 (3) 4 (3) 0 25 (13)
parser 500 (380) | O 3 (1) 0 0 3 (1)
rayshade | 500 (68) |0 5(1) 0 1(1) 5 (1)
gzip 500 (239) |0 1(1) 2 (2) 157 (157) |3 (3)

47

Percentage of Trials

Fault Injection into Critical Data

with Samurai .L egend without Samurai
100% SU(.ZCCSS 100%
00% 0 failure 199 TP TITIIT]
0% detect o,
70% - 0% ——
60% - 60% — — — — — — — = = -
50% - 50%
40% 40%
30% - 30%
20% - ig;
10% - 0%
0% -
SRS RRSS 00622022622022Qggggggggggggggggg
SIS WA G AN ORI
VT RTOATVIOND Fault Period (# of accesses)

Fault Period (# of accesses)
48

Samurai/Critical Memory: Summary

* Critical Memory: Abstract Memory Model
— Reason about critical data in applications

— Define special operations: critical loads/stores
— Inter-operation with un-trusted third-party code

 Samurai: Software Prototype of CM

— Uses replication and forward error-correction

— Demonstrated on both applications and libraries
* Performance overheads of 10 % or less in most cases

Learning Objectives

Define Software Fault-tolerance and enumerate
its challenges

List three diversity-based techniques and
evaluate their respective pros and cons

Use robust data structures for structural integrity

Use critical memory for semantic integrity

