Architectural Level Fault-
Tolerance Techniques

EECE 513: Design of Fault-tolerant
Digital Systems

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors
and evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing
and scrubbing

List the techniques used in the 1/0 sub-system

High-Availability Systems

e |IBM G5 Mainframes

— Duplicated execution units
on each core

— Redundant CPU logic

— Inline checking in 1/0O sub-
system

— ECCin memory and
registers

* Error Recovery is
accomplished using
instruction retry

— Transparent to the S/W

« Tandem Non-Stop

— Duplicated processors
running in lock-step

— Process pairs for checking

— End-to-end disk
checksums, CRC

— ECCin memory only

* Error recovery is achieved
by swapping in backup
processes

— S/W needs to be involved
in the failover

Commodity Micro-processors

Source: Recent Advances and New Avenues in Hardware-Level Reliability Support, by

lyer, Nakka, Kalbarczyk and Mitra, IEEE Micro 2005.

Feature Intel P& family AMD Hammer Intal ltanium
Internal regsters Party NO protection No protecton
L1 Datas Party cache: parity; Party
D cache: ECC
Tag Party Parity Party
L2 Dats ECC ECC B-oit ECC/
64 data bits
Tag Party eCC Party
L3 Data NIA N/A B-bit ECC/
&4 cata bats
Tag NAA N/A 3 panty bits
T.Bs Party Parity Party
Buses ECCon NO protection No protecton
C2U-L2 bus
Other features Machine check MCA NMultilevel MCA:
architacture (MCA) local and global
10 datect and MCA, hargware
COFract errors n bus reset
procassor loge
Ungue features Functiona Chipoll memory Multilevel error
redundancy controller to conta nment;
chacking using SUPROt mamary watchaog tmer;
master/slave scnubbing, NX error logging and
Procassors VIFUS protecton corracted error

for Windows XP
§32

notficaton; NX
VIFUS protection

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors
and evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing
and scrubbing

List the techniques used in the 1/0 sub-system

Memory Errors: History

* Memory elements have long been the target
of soft-errors since the late 70’s

— In 1978 May and Woods reported "A New Physical
Mechanism for Soft Errors in Dynamic Memories”

— In 1979, "Alpha-Particle-Induced Soft Errors in
Dynamic Memories.”

— SRAMs saw problems approximately 2 years later

Soft Errors Today

Baumann, R.;, "The impact of technology scaling on soft error rate performance
and limits to the efficacy of error correction," Electron Devices Meeting, 2002.

DRAMs SRAMs
100000 g —_— . - 4.0 100000
&.M_symmsul
10000 . " $y 35 —
S 10000 4
i, 2
2
g <
& 4000 |
3 u :
100
Integration Density (Mbit)
Figure X, The wngle bt SER wead (white diamonds) in SRAM devices s 2

Figure 2. The single bit (white diamonds) sad system (Mack diamonds) SER - o of technology node The raged scakng down of opevating woitapes
trends for DRAM as o function of technology node. The operating voliage o “mm”*w with pray tnangles. The - 10x roducson @

each nede |8 represented by the curve with gray iriangles SER after the 025 um node is the effect of removing BIFSG

Error Trends in today’s memories

 DRAM reliability has remained relatively constant
over many years

— Thanks to improvement in fabrication
— May be different in eDRAMSs and mobile DRAM

 SRAM reliability becoming an increasing concern
with shrinking cell sizes and voltage

* DRAM hard errors are emerging as a problem
[Schroeder’09][Dell’08]

Parity Protection - 1

* Single bit added to each memory byte/word
to detect a single error
— Cannot detect multiple errors
— Cannot correct the error
— Affordable alternative to ECC memory

Parity bit — even parity

Xp =X0"Ax1LANx2AMNx3Mx4 Mx5Mx6 NxT7

Parity Protection - 2

Requires an additional operation on reads/writes to
memory > extra access latency

Circuitry to compute parity bit is simple, but requires
additional area and power

Used mainly in SRAM structures where error rates
were low and access times are important

For DRAMSs, no added benefit of using parity over ECC
when the memory data width is greater than 8 bytes

ECC Memory -1

* For every memory word of size ‘n’ bits, we need
at least log, (n) bits of ECC memory
— For 64 bit memory, we need at least 6 bits of ECC
— The check bits are distributed throughout word

— Each bit is protected by multiple checkbits given by
the index (the sum of the checkbits matches index)

R1 = R3*R5AR7~R97R11
= 0M1AM1IAOAN]
=1

R4 = R5*R6”R7”~R12
= 1A07M1AM1
=1

ECC Memory - 2

* Let’s say you had a single bit error in R5 (1-20)

R1 R2. R4 O .. R8 { {

Check Bits are recomputed and compared.

R1=R3AR5AR7AR9/AR11=0A0NMN1A0N1=0
R4=R5"R6 "R7A"R12=07A0"1171=0
Both check-bits R1 and R4 differ from their computed

values. These are called the syndromes. So we can infer
that the bit R5 had an error in it, and can correct the error.

ECC Memory -3

e Let’s say you errors in bits R5 and R7 (double-error)

R1R2.R40.0 RS } ‘ ‘ ‘

Let’s compute check-bits R1, R2 and R4

R1=R3AR52R7AR9AR11=07202A0"071=1 (Same as prior value)
R2=R3"R6"R7"R10"R11=0~20~0"r0"1=1 (Differs from prior value)
R4=R5"R6"R7"A"R12=02020~1=1 (Same as prior value)

How do we distinguish this case from the one where bit R2 is corrupted ?

ECC Memory -4

* Add an extra parity bit RO for the entire word

RO R1 R2.R4 0.0 R8

Extra parity bit for the word is added
* |In the case of a single bit error, both syndrome
pit(s) and RO bit will differ = can be corrected

* |n case of a double error, only syndrome bit(s)
differs = can be detected but not corrected

ECC: Implementation Trade-offs

* ECC memory is not free !
— Performance overheads for read/write operations

* 3t0 4 % more for PC133 CAS2 ECC SDRAM
* Up to 33 % for high-speed SRAMs

— Area overhead for error-detection/correction ckts
e 20 % die overheads

— Additional costs as chipset support is needed
* 10 to 25 % more for entire chip

— Effectiveness: Corrects more than 90% of errors

Above nos. are from the Terazzon white paper.

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors
and evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing
and scrubbing

List the techniques used in the 1/0 sub-system

ChipKill ECC - 1

* ECC can detect 2 bit and correct 1 bit errors
— Provided the entire memory chip does not fail
— Chip failure can lead to data loss even with ECC

Traditional SEC/DED ECC
for a 64-bit word with
eight check-bits of ECC

8 ECC Bits 64 Data Bits

ChipKill ECC - 2

* Solution: Use Chip-kill ECC™ (IBM S/390)
— Spread the ECC check bits over multiple chips

— Bit-steering = Steer the checkbits of adjacent bits
in a memory word to different words in the ECC

Chip-kill ECC

Note how the bits are
scattered across
different modules

Figure 2

ChipKill ECC: Implementation Tradeoffs

* Incurs four times the overhead of traditional ECC
— Can be optimized using very wide ECC words
— Provide detection of chip failures but not correction

 Compagqg proposed a clever interleaving solution
to combine two ECC words into one module

— Provides the benefits of Chipkill ECC with only as
much cost as parity protection

— After a chip has failed, the Compaq ECC is unable to
provide protection from single/double bit errors

Parity, ECC and ChipKill- Comparison

* Simulation data
gathered by IBM
over 36 months
comparing:

— 32 MB Parity

protected
memory

— 1 GB SEC ECC
— 1 GB Chipkill ECC

1000

§00

-d =
-
Py
S

=
o

600 '

[
(]
o

Cumiative Falls per 10,000 Sysiems
- -
L} L

400

b
{17 | Sy |

I2ZMB Parity
] 108 sEC ECC
B 168 Chipkin Protect ,

1 Month 12 Norths 16 Momths

Memory Type and Months in Fleld

Other variations of ECC

* Scrubbing e Sparing

— ECC memory only checks — Correlated or large area
the bits during reads/ defects cannot be
writes combated with ECC

— However, infrequent alone
accesses may lead to bit — Use spare rows/columns
errors accumalating in conjunction with ECC

— Solution: Scrub memory — Leads to an order of
periodically by magnitude reliability
performing reads/writes improvement over ECC

to unaccessed memory alone for hard faults

Learning Objectives

List the techniques for improving the reliability of
commodity & high end processors

Design coding techniques for memory soft errors
and evaluate their trade-offs

Understand the benefits of chipkill ECC, sparing
and scrubbing

List the techniques used in the 1/0 sub-system

/O Sub-system - 1

* Disk and other storage media protected using
RAID technologies
— Fairly mature, industry standard
— However, data is susceptible when it is buffered
— Firmware controllers and I/O processor errors

* Need to ensure end-to-end consistency of
data from I/O initiation to disk read/write

/O Sub-system - 2

* Techniques for end-to-end I/O checking
— Checksums on data before and after reads
— Checking of header fields for consistency

— Watchdog timer for ensuring no deadlocks or
livelocks of 1/O devices

— System-level consistency checks. e.g., read back
data written to disk in chunks and check them

— Use multiple file organizations to store data

Summary

* Processor design must be self-checking
— Error detection and recovery part of design
— Duplication incurs upto 35 % area overheads (G5)
— Commodity processors cannot afford such high costs

* Memory elements can be protected using ECC
— ECC alone is not enough for chip failures -> chipkill
— ECC has power, performance and area costs

* |/O systems need end-to-end consistency checks

Further Reading

T. Slegel et al., IBM's S/390 G5 Microprocessor Design. IEEE
Micro 19, 2 (Mar. 1999), pp.12-23.

Soft Errors in Electronic Memory, A white paper by Terrazon
Semiconductors, 2004.

Baumann, R.;, "The impact of technology scaling on soft
error rate performance and limits to the efficacy of error
correction,"” Electron Devices Meeting, 2002.

Timothy J. Dell, A White Paper on the Benefits of Chipkill-
Correct ECC for PC Server Main Memory, (1997).

Schroeder, B., Pinheiro, E., and Weber, W. 2009. DRAM
errors in the wild: a large-scale field study. In Proceedings of
the Eleventh international Conference on Measurement and
Modeling of Computer Systems. SIGMETRICS '09.

